Loading...

Integrating bacterial inoculation and foliar nutrition for sustainable berseem clover (Trifolium alexandrinum L.) production

 


Citation :- Integrating bacterial inoculation and foliar nutrition for sustainable berseem clover (Trifolium alexandrinum L.) production. Res. Crop. 25: 702-706
AMMAR AL-ZUBADE, HUSSEIN ABBAS MOHAMMED AND INTSAR H. H. AL-HILFY +9647817220121ammar.s.121@coagri.uobaghdad.edu.iq
Address : Department of Field Crops Sciences, College of Agricultural Engineering Sciences, University of Baghdad, Iraq
Submitted Date : 20-08-2024
Accepted Date : 19-10-2024

Abstract

As an annual leguminous forage crop, berseem clover demonstrates significant potential as a cover crop and green manure. Through symbiotic nitrogen fixation and extensive root development, it enhances soil fertility and crop production optimization. The integration of berseem clover into crop rotations was found to increase subsequent crop yields and reduce reliance on synthetic fertilizers. This study was conducted during the growing seasons of 2022-23 to explore the contribution of bacterial inoculation (inoculated and uninoculated). Foliar alga 600 timing applications implemented at concentrations of (0 and 1 g/L) (no spray, one spray, and two sprays) in local clover cultivar. The treatments were applied at both the green-up and flowering stages. Alga 600 treatments, bacterial inoculation, and their interactions significantly differed in most measured parameters. Inoculated clover with two sprays exceeded the control treatment (without inoculation) and other foliar treatments of alga 600 application on seed yield, pod number, 1000 seed weight, and total dry matter at the flowering stage. Hence, more research should be done considering different kinds of symbiotic bacterial strains on responsive cultivars. 

Keywords

Bio-stimulants clover legume Rhizobium spp. yield      


References

Agarwal, S. and Ahmad, Z. (2010). Contribution of the Rhizobium inoculation on plant growth and productivity of two cultivars of berseem (Trifolium alexandrinum L.) in saline soil. Asian J. Plant Sci.  9: 344-50.  doi:10.3923/ajps.2010.344.350.
Al-Furaiji, H. and Ali, N. (2024). Effect of tillage, crop rotation and previous crop residues on clover, maize and mung bean productivity. Iraqi J. Agric. Sci. 55(Spl.): 277-83. doi:10.36103/ijas.v55iSpecial.1906.
Al-Obaidi, S. and Abdul-Ratha, H. (2021). Evaluation of the combination of bacterial biofertilizer and vermicompost in the availability of N, P, K and some of plant parameters of beans (Phaseolus vulgaris L.). Iraqi J. Agric. Sci. 52: 960-70.
Al-Rukabi, M. and Al-Jebory, K. (2017). Response of green bean to nitrogen fixing bacterial  inoculation and molybdenum. Iraqi J. Agric. Sci. 48: 413-21. doi:10.3 6103/ijas.v48i2.403.
Al-Temimi, A. H. and Al-Hilfy, I. H. (2022). Role of plant growth promoting in improving productivity and quality of maize. Iraqi J. Agric. Sci. 53: 1437-46. doi:10. 36103/ijas.v53i6.1660.
Baset, M. M., Shamsuddin, Z., Wahab, Z. and Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured'musa'plantlets under nitrogen-free hydroponics condition. Aust. J. Crop Sci. 4: 85-90. 
Chinasho, E. and Masa, M. (2023). Nodulation, seed yield and its related traits response of common bean (Phaseolus Vulgaris L.) cultivars to NPS fertilizer under acidic soil. Iraqi J. Agric. Sci. 54: 598-608. doi:10.36103/ijas.v54i2.1736.
Coppens, J., Lindeboom, R., Muys, M., Coessens, W., Alloul, A., Meerbergen, K., Lievens, B., Clauwaert, P., Boon, N. and Vlaeminck, S. E. (2016). Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresour. Technol. 211: 41-50. doi:10.1016/j.biortech.2016.03.001.
Deaker, R., Roughley, R. J. and Kennedy, I. R. (2004). Legume seed inoculation technology - a review. Soil Biol. Biochem. 36: 1275-88. doi:10.1016/J.SOILBIO. 2004.04.009.
Drouin, P., Tremblay, J., da Silva, É. B. and Apper, E. (2022). Changes to the microbiome of alfalfa during the growing season and after ensiling with Lentilactobacillus buchneri and Lentilactobacillus hilgardii inoculant. J. Appl. Microbiol. 133: 2331-47. doi:10. 1111/jam.15641.
Hussain, N., Mujeeb, F., Tahir, M., Khan, G., Hassan, N. and Bari, A. (2002). Effectiveness of Rhizobium under salinity stress. Asian J. Plant Sci. 1: 12-14. doi:10.3923/ajps.2002.12.14.
Hussien, A., Abdul-Ratha, H. and Hadwan, H. (2019). Evaluation use of bacillus mucilaginosus as biofertilizer interfere with glomus mosseae on growth and yield of corn. Iraqi J. Agric. Sci. 50: 64-75. 
Iannetta, P. P., Hawes, C., Begg, G. S., Maaß, H., Ntatsi, G., Savvas, D., Vasconcelos, M., Hamann, K., Williams, M. and Styles, D. (2021). A multifunctional solution for wicked problems: value-chain wide facilitation of legumes cultivated at bioregional scales is necessary to address the climate-biodiversity-nutrition nexus. Front. Sustain. Food Syst. 5: doi:10.3389/fsufs.2021.692137.
Morel, M. A., Braña, V. and Castro-Sowinski, S. (2012). Legume crops, importance and use of bacterial inoculation to increase production. Crop Plant 12: 218-40. doi:10.5772/37413.
Qureshi, M. A., Iqbal, A., Akhtar, N., Shakir, M. A. and Khan, A. (2012). Co-inoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.). Soil Environ. 31: 47-54.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571- 86. doi:10.1023/A:1026037216893.

Global Footprints