Loading...

Maize-legume intercropping system improved soil quality under irrigated and rainfed conditions

Citation :- Maize-legume intercropping system improved soil quality under irrigated and rainfed conditions. Res. Crop. 25: 553-559
NONG SELLO SIMON, KGOPA PHOLOSHO MMATEKO AND OGOLA JOHN BOB OCHANDA pholosho.kgopa@ul.ac.za
Address : Department of Plant Production, Soil Science, and Agricultural Engineering, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
Submitted Date : 13-08-2024
Accepted Date : 26-10-2024

Abstract

Maize monoculture, which predominates smallholder cropping systems in NE South Africa negatively affects soil quality. We assessed the effect of rainfed and irrigated maize-legumes intercropping systems (sole maize, sole chickpea, sole mungbean, maize+chickpea, maize+mungbean) on soil quality variables at Mankweng and Thohoyandou, South Africa in summer 2019/2020. Three soil samples were randomly collected from each plot at 0–20 cm depth after harvesting at both sites for the determination of bulk density (BD), aggregate stability (AS), pH, electrical conductivity (EC), soil organic matter (SOM), soil organic carbon (SOC), phosphorus (P), ammonium (NH4+), nitrate (NO3-), soil active carbon (SAC), and potentially mineralizable nitrogen (PMN). Intercropping affected pH, SOM, PMN, SOC, P, NH4+ and NO3-. Maize + chickpea (Thohoyandou and Mankweng) and maize + mungbean (Thohoyandou) exhibited higher NH4+ content than sole maize. NO3- was higher under intercropping compared to sole maize at both sites. Mungbean appeared to have greater effect on soil quality parameters than chickpea and intercropping was generally more beneficial under irrigated systems. Clearly, incorporation of legumes as intercrops in maize-based cropping systems may enhance soil productivity.

Keywords

Intercropping systems legumes rainfed agriculture semi-arid climate soil quality

References

Abraheem, B. A., Al-Hilfy, I. H. H., Al-Abodi, H. M. K., Mahdi, A. M. and Salman, Kh. A. (2024).
Effects of sorghum-mung bean intercropping and nutrient solutions on fruit growth indicators. Res. Crop. 25: 416-24.
Ala-Kokko, K., Nalley, L. L., Shew, A. M., Tack, J. B., Chaminuka, P., Matlock, M. D. and D'Haese, M. (2021). Economic and ecosystem impacts of GM maize in South Africa. Glob. Food Secur. 29: doi:10.1016/j.gfs.2021.100544.
Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M. and Radulovich, R. (2020). Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Front. Environ. Sci. 8: 1-8. doi:10.3389/fenvs.2020.579904.
Bray, R. H. and Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39-46. doi:10.1097/00010694-194501000-00006.
Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-Total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. (Book Editor: Page, A. L.). American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. pp. 595-624. doi:10.2134/ agronmonogr9.2.2ed.c31.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W. and Brussaard, L.  (2018). Soil quality–A critical review. Soil Biol. Biochem. 120: 105-25. doi:10.1016/j.soilbio.2018.01.030.
Campbell, D. J. and Henshall, J. K. (1991). Bulk density. In: Soil analysis. Physical methods (Eds. Smith K.A., Mullins, C.E.). Marcel Dekker. pp. 329-66.
Chatterjee, D., Datta, S. C. and Manjaiah, K. M. (2014). Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. J. Plant Nutr. Soil Sci. 3: 640-56.
Chen, P., Du, Q., Liu, X., Zhou, L., Hussain, S., Lei, L., Song, C., Wang, X., Liu, W., Yang, F., Shu, K., Liu, J., Du, J., Yang, W. and Yong, T. (2017). Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PloS One. 12: 1-19. doi:10.1371/journal.pone.0184503.
Davies, B. E. (1974). Loss-on-Ignition as an Estimate of Soil Organic Matter. Soil Sci. Soc. Am. J. 38: 150-51. doi.org/10.2136/sssaj1974.03615995003800010046x.
Duchene, O., Vian, J. F. and Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agric. Ecosyst. Environ. 240: 148-61. doi:10.1016/j.agee.2017. 02.019.
Elliott, E. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J.  50: 627-33. doi:10.2136/sssaj1986.0361599500 5000030017x.
Kephe, P. N., Siewe, L. C., Lekalakala, R. G., Kwabena Ayisi, K. and Petja, B. M. (2022). Optimizing smallholder farmers’ productivity through crop selection, targeting and prioritization framework in the Limpopo and Free State Provinces, South Africa. Front. Sustain. Food Syst. 6: 1-21. doi:10.3389/fsufs.2022.738267.
Kgopa, P. M., Mashela, P. W.  and Manyevere, A. (2018). Treated wastewater quality with respect to heavy metal concentrations in wastewater and borehole water used for irrigation in a semi-arid area. Transylv Rev. 25: 12-14.
Layek, J., Das, A., Mitran, T., Nath, C., Meena, R. S., Yadav, G. S., Shivakumar, B. G., Kumar, S. and Lal, R. (2018). Cereal + legume intercropping: An option for improving productivity and sustaining soil health. Legumes for soil health and sustainable management. In: Legumes for Soil Health and Sustainable Management (Eds. Meena, R., Das, A., Yadav, G., Lal, R.). Springer, Singapore. pp. 347-86. doi:10.1007/978-981-13-0253-4_11.
Makonya, G. M., Ogola, J. B., Muasya, A. M., Crespo, O., Maseko, S., Valentine, A. J., Ottosen, C. O., Rosenqvist, E. and Chimphango, S. B. (2019). Chlorophyll fluorescence and carbohydrate concentration as field selection traits for heat tolerant chickpea genotypes. Plant Physiol. Biochem. 141: 172-82. doi:10.1016/j.plaphy.2019.05.031.
Manevski, K., Børgesen, C. D., Andersen, M. N. and Kristensen, I. S. (2015). Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe: a combined field and modelling study. Plant Soil 388: 67-85. doi:10.1007/s11104-014-2311-6.
Nwite, J. N., Njoku, C. and Alu, M. O. (2017). Effects of intercropped legumes with maize (Zea mays L.) on chemical properties of soil and grain yield of maize in Abakaliki, Nigeria. Niger Agri. J. 48: 105-12.
Panda, S. K., Sairam, M., Sahoo, U., Shankar, T. and Maitra, S. (2022). Growth, productivity and economics of maize as influenced by maize-legume intercropping system. Farm. Manage. 7: 61-66.
Pang, J., Ryan, M. H., Lambers, H. and Siddique, K. H. (2018). Phosphorus acquisition and utilisation in crop legumes under global change. Curr. Opin. Plant Biol. 45: 248-54. doi:10. 1016/j.pbi.2018.05.012.
Paul, S., Chatterjee, N., Bohra, J. S., Singh, S. P., Dutta, D., Singh, R. K. and Rakshit, A. (2019). Soil health in cropping systems: An Overview. Agronomic Crops 1: 45-66.  doi:10.1007/ 978-981-32-9151-5_4.
Rhoades, J. D. (1982). Soluble salts. In: Methods of soil analysis: Part 2: Chemical and microbiological properties. (Ed. Page A. L.) Monograph Number 9 2nd edn. ASA, Madison, WI. pp. 167-79. doi:10.2134/agronmonogr9.2.2ed.c10.
Sharmili, K., Yasodha, M., Rajesh, P., Rajendran, K., Sugitha Thankappan and Minithra, R. (2021). Millet and pulse-based intercropping system for agricultural sustainability - A review. Crop Res. 56: 369-78.
Sileshi, G. W., Debusho, L. K. and Akinnifesi, F. K. (2012). Can integration of legume trees increase yield stability in rainfed maize cropping systems in Southern Africa? J. Agron. 104: 1392-98.
Stanford, G. and Smith, S. J. (1972). Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 36: 465-72. doi:10.2136/sssaj1972.03615995003600030029x.
Toker, P., Canci, H., Turhan, I., Isci, A., Scherzinger, M., Kordrostami, M. and Yol, E. (2024). The advantages of intercropping to improve productivity in food and forage production – a review. Plant Prod. Sci. 27: 155-69. doi:10.1080/1343943x.2024.2372878.
van Reeuwijk, L. P. (2002). Procedures for soil analysis, 6th edn. International soil reference and information centre, Food and agriculture organization of the United States, Wageningen. pp. 4.
Wang, Z. G., Jin, X., Bao, X. G., Li, X. F., Zhao, J. H., Sun, J. H., Christie, P. and Li, L. (2014). Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PloS One 8: 1-24. doi:10.1371/journal.pone.0113984.
Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. and Samson-Liebig, S. E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Alternative Agric. 18: 3-17. doi:10.1079/AJAA2003003.
Xu, Q., Xiong, K., Chi, Y. and Song, S. (2021). Effects of crop and grass intercropping on the soil environment in the karst area. Sustainability 13: 1-14. doi:10.3390/su13105484.
Yang, H., Zhang, W. and Li, L. (2021). Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 8: 373-86. doi:10.15302/J-FASE-2021398.

Global Footprints