Loading...

Genetic analysis of Meloidogyne species in South Africa using the COI marker

Citation :- Genetic analysis of Meloidogyne species in South Africa using the COI marker. Res. Crop. 25: 691-695
GAVIN GELDENHUYS gavin.geldenhuys@ul.ac.za
Address : Aquaculture Research Unit, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
Submitted Date : 4-08-2024
Accepted Date : 15-10-2024

Abstract

New-generation molecular approaches and methods are currently being developed to accurately identify species and genetic diversity. Given the significant impact of Meloidogyne sp. on agriculture, understanding the genetic structure of its populations is essential. While DNA barcoding studies have been conducted in the family Heteroderidae, there has been a lack of research on haplotype diversity. Therefore, in 2024, a study was undertaken at the University of Limpopo to analyse haplotype diversity within the Meloidogyne genus based on the cytochrome c oxidase I (COI) region. In this study, a total of 73 sequences from South Africa were utilised (GenBank), representing four species (Meloidogyne sp., M. incognita, M. javanica, and M. enterolobii). The haplotype analysis revealed four haplotypes which displayed low nucleotide (π = 0.045) diversity. In contrast, haplotype diversity (Hd) was 0.49, and the number of segregating sites (S) was 23. The result showed that Meloidogyne sp had low variability in haplotype supported by the haplotype network. Tajima (D) and Fu's Fs were found to be positive (P < 0.05), whereas the overall FST value was 0.99 (P < 0.05). In conclusion, genetic analysis showed there was no high variation amongst papulation from South African populations. 

Keywords

COI mtDNA genetic analysis haplotype diversity Meloidogyne molecular markers

References

Aminisarteshnizi, M. (2024). Management of meloidogyne incognita associated with okra (Abelmoschus esculentus) using moringa (Moringa oleifera). Trop. Agric. 101: 115-19.
Antoniou, A. and Magoulas, A. (2014). Application of mitochondrial DNA in stock identification. Stock identification methods, 2nd edn. Academic Press, Cambridge. pp: 257–95. doi:10.1016/B978-0-12-397003-9.00013-8.
Barasa, J. E., Abila, R., Grobler, J. P., Dangasuk, O. G., Njahira, M. N. and Kaunda-Arara, B. (2014). Genetic diversity and gene flow in Clarias gariepinus from Lakes Victoria and Kanyaboli, Kenya. Afr. J. Aquat. Sci. 39: 287-93. doi:10.2989/16085914.2014.933734.
Excoffier, L. and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Biol. Evol. 10: 564-67.
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-25. doi:10.1093/ genetics/147.2.915.
Geldenhuys, G. (2023). Efficacy of Moringa (Moringa oleifera) formulations on suppression of root-knot nematodes (Meloidogyne javanica) and growth of eggplant (Solanum melongena). Res. Crop. 24: 567-70.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. InNucleic acids symposium series. Information Retrieval Ltd London 41: 95–98.
Han, P., Zhang, Y., Lu, Z., Wang, S., Ma, D., Biondi, A. and Desneux, N. (2018). Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomologia Generalis 38: 113-25.
Janssen, T., Karssen, G., Verhaeven, M., Coyne, D. and Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype-based diagnostics and reveals evidence of recent reticulate evolution. Sci. Rep. 6: 22591. doi:10.1038/srep22591.
Kiewnick, S. H. M., van den Elsen, S., van Megen, H., Frey, J. E. and Helder, J. (2014). Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. Eur. J. Plant Pathol. 140: 97–110.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-49. doi:10.1093/molbev/msy096.
Mwakubo, S. M., Ikiara, M. M. and Abila, R. (2007). Socio-economic and ecological determinants in wetland fisheries in the Yala Swamp. Wetl. Ecol. Manag. 15: 521-28.
Pagan, C., Coyne, D., Carneiro, R., Kariuki, G., Luambano, N.,   Affokpon, A. and Williamson, V. M. (2015). Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology 105: 350–57. doi:10.1094 /PHYTO-08-14-0225-R.
Rambaut, A. (2017). “FigTree v.1.4.4. http://tree.bio.ed.ac.uk/software/figtree/”. [accessed: 2020 Oct 25].
Shao, H., Zhang, P., You, C., Li, C., Feng, Y. and Xie, Z. (2020). Genetic diversity of the root-knot nematode Meloidogyne enterolobii in mulberry based on the mitochondrial COI Gene. Ecol. Evol. 10: 5391-401. doi:10.1002/ece3.6282.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–95. doi:org/10.1093/genetics/123.3.585.
Villesen, P. (2007). FaBox: an online toolbox for fasta sequences. Mol. Ecol. Not. 7: 965–68.  doi:10.1111/j.1471-8286.2007.01821.x.
 

Global Footprints