Abdallah, Y., Ogunyemi, S. O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E. and Chen, J. (2019). The green synthesis of MgO nano‐flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed Res. Int. 2019: doi:10.1155/2019/5620989.
Abobatta, W. F. (2018). Nanotechnology application in agriculture. ASAG. 2: 99-102.
Abobatta, W. F. (2019). Impact of Nanotechnology in the Agro-Food sector. Arch. Nano Op Acc. J. 2: 160-63.
Abobatta, W. F. (2021). Precision agriculture: A new tool for development. In Precision Agriculture Technologies for Food Security and Sustainability. pp. 23-45. IGI Global.
Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L. and White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci.: Nano. 6: 2002-30.
Agrimonti, C., Lauro, M. and Visioli, G. (2021). Smart agriculture for food quality: Facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61: 971-81.
Akinsiku, A. A., Dare, E. O., Ajanaku, K. O., Adekoya, J. A. and Ayo-Ajayi, J. (2018). Green synthesized optically active organically capped silver nanoparticles using stem extract of African cucumber (Momordica charantia). J. Mater. Environ. Sci. 3: 902-08.
Ananthi, V., Prakash, G. S., Rasu, K. M., Gangadevi, K., Boobalan, T., Raja, R. and Arun, A. (2018). Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J. Photochem. Photobiol. B. 186: 232-42.
Batiha, G. E. S., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H. and Rashwan, E. K. (2020). Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomol. 10: 202. doi:10.3390/ biom10020202.
Bhoopesh, G., Baradhan, G., Suresh Kumar, S. M., Kathirvelu, C. and Ramesh, S. (2024). Synergistic impact of nano-urea and microbial inoculants with varied nitrogen regimes on the yield and yield attributes of hybrid maize (Zea mays L.). Crop Res. 59: 122-28.
Butt, B. Z. and Naseer, I. (2020). Nanofertilizers. Nanoagronomy, Springer: Berlin/Heidelberg, Germany. pp.125-52.
Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G. and Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomater 10: doi:10.3390/nano10091763.
Cerqueira, M. A., Vicente, A. A. and Pastrana, L. M. (2018). Nanotechnology in food packaging: opportunities and challenges, M. A. P. R Cerqueira, J. M. Lagaron L. M. P. Castro A. A. M., des Oliveira Soares Vicente (Eds.), Nanomaterials for Food Packaging, Elsevier. pp. 1-11. doi:10.1016/C2016-0-01251-2.
Chausali, N., Saxena, J. and Prasad, R. (2022). Recent trends in nanotechnology applications of bio-based packaging. J. Agric. Res. 7: doi:10.1016/j.jafr.2021.100257.
Chen, H. (2018). Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem. Spec. Bioavailab. 30: 123-34.
Cunha, F. A., Cunha, M. D. C., da Frota, S. M., Mallmann, E. J., Freire, T. M., Costa, L. S. and Fechine, P. B. (2018). Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J. Microbiol. Biotechnol. 34: 1-15.
De, A., Das, R., Jain, P. and Kaur, H. (2022). Green chemistry-assisted synthesis of CuO nanoparticles: Reaction optimization, DNA cleavage, and DNA binding studies. Mater. Today Proc. 49: 3122-25.
Devatha, C. P. and Thalla, A. K. (2018). Green synthesis of nanomaterials. In Synthesis of inorganic nanomaterials. Woodhead Publishing. pp: 169-84.
El-Shawa, G. M., Alharbi, K., AlKahtani, M., AlHusnain, L., Attia, K. A. and Abdelaal, K. (2022). Improving the quality and production of philodendron plants using nanoparticles and humic acid. Hortic. 8: doi:10.3390/horticulturae8080678.
Erktan, A., McCormack, M. L. and Roumet, C. (2018). Frontiers in root ecology: recent advances and future challenges. Plant Soil 424: 1-9.
Fatemi, M., Mollania, N., Momeni-Moghaddam, M. and Sadeghifar, F. (2018). Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J. Biotech. 270: 1-11.
Feregrino-Perez, A. A., Magaña-López, E., Guzmán, C. and Esquivel, K. (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci. Hortic. 238: 126-37.
Gilbertson, L. M., Pourzahedi, L., Laughton, S., Gao, X., Zimmerman, J. B., Theis, T. L. and Lowry, G. V. (2020). Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15: 801-10.
Giraldo, J. P., Wu, H., Newkirk, G. M. and Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14: 541-53.
Gomaa, M. A., Radwan, F. I., Kandil, E. E. and Al-Msari, M. A. F. (2018). Response of some Egyptian and Iraqi wheat cultivars to mineral and nanofertilization. Egypt. Acad. J. Bio. Sci. 9: 19-26.
Gu, H., Chen, X., Chen, F., Zhou, X. and Parsaee, Z. (2018). Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem. 41: 109-19.
Ha, N. M. C., Nguyen, T. H., Wang, S. L. and Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Chem. Intermed. 45: 51-63.
Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A. and Kyzas, G. Z. (2022). Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. 97: 375-418.
Husen, A. and Iqbal, M. (2019). Nanomaterials and plant potential: an overview. Springer International Publishing. pp. 3-29.
Iqbal, M. A. (2019). Nano-fertilizers for sustainable crop production under changing climate: a global perspective. Sustain. Crop Prod. 8: 1-13.
Jalal, M., Ansari, M. A., Alzohairy, M. A., Ali, S. G., Khan, H. M., Almatroudi, A. and Raees, K. (2018). Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomater. 8: doi:10.3390/nano8080586.
Javeed, Z., Riaz, U., Murtaza, G., Mehdi, S. M., Idrees, M., Zaman, Q. U. and Khalid, W. (2022). Nanofertilizers and nanopesticides: application and impact on agriculture. In Diverse Applications of Nanotechnology in the Biological Sciences, Apple Academic Press. pp. 199-212.
Jayappa, M. D., Ramaiah, C. K., Kumar, M. A. P., Suresh, D., Prabhu, A., Devasya, R. P. and Sheikh, S. (2020). Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L. characterization and their applications. Appl. Nanosci. 10: 3057-74.
Kalpana, V. N. and Rajeswari, V. D. (2018). A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. appl. 2018: doi:10.1155/2018/3569758.
Kalpana, V. N., Kataru, B. A. S., Sravani, N., Vigneshwari, T., Panneerselvam, A. and Rajeswari, V. D. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano. 3: 48-55.
Kanwal, A., Sharma, I., Bala, A., Upadhyay, S. K. and Singh, R. (2022). Agricultural application of synthesized ZnS nanoparticles for the development of tomato crop. Lett. Appl. NanoBioSci. 12: 1-9.
Kitir, N., Gunes, A., Turan, M., Yildirim, E., Topcuoglu, B., Turker, M. and Fırıldak, G. (2019). Bio-boron fertilizer applications affect amino acid and organic acid content and physiological properties of strawberry plant. Erwerbs Obstbau. 61: 129-37.
Kumar, K. H., Wathugala, D. L. and Hafeel, R. F. (2019). Effect of nano calcite foliar fertilizer on the growth and yield of rice (Oryza sativa). J. Agric. Sci.–Sri Lanka 14: 154-64.
Kumar, M., Saini, R. V., Gupta, M. and Singh, R. (2024). Green synthesis of silver nanoparticle (Cha-AgNPs) using Chenopodium album extract and evaluation of their antifungal potential against pathogenic fungi. Biomass Convers. Biorefin. 1-12. doi:10.1007/s13399-024-05721-z.
Lakhan, M. N., Chen, R., Shar, A. H., Chand, K., Shah, A. H., Ahmed, M., Ali, I., Ahmed, R., Liu, J., Takashi, R. and Wang, J. (2020). Eco-friendly green synthesis of clove buds extracts functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. J. Microbiol. Methods. 173: doi:10.1016/j.mimet.2020.105934.
Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T. and Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala J. Mod. Sci. 4: 61-68.
Lee, Y. J., Song, K., Cha, S. H., Cho, S., Kim, Y. S. and Park, Y. (2019). Sesquiterpenoids from Tussilago farfara flower bud extract for the eco-friendly synthesis of silver and gold nanoparticles possessing antibacterial and anticancer activities. Nanomater 9: doi:10.3390/nano9060819.
Lowry, G. V., Avellan, A. and Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14: 517-22.
Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z. and Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 106: 122-28.
Maceda, A. F., Ouano, J. J. S., Que, M. C. O., Basilia, B. A., Potestas, M. J. and Alguno, A. C. (2018). Controlling the absorption of gold nanoparticles via green synthesis using Sargassum crassifolium extract. KEM 765: 44-48.
Maheshwaran, G., Muneeswari, R. S., Bharathi, A. N., Kumar, M. K. and Sudhahar, S. (2021). Eco-friendly synthesis of lanthanum oxide nanoparticles by Eucalyptus globulus leaf extracts for effective biomedical applications. Mater. Lett. 283: doi:10.1016/j.matlet.2020.128799.
Mahil, E. I. T. and Kumar, B. A. (2019). Foliar application of nanofertilizers in agricultural crops–A review. J. Farm Sci. 32: 239-49.
Mamatha, G., Sowmya, P., Madhuri, D., Mohan Babu, N., Suresh Kumar, D., Vijaya Charan, G. and Madhukar, K. (2021). Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract. J. Inorg. Organomet. Polym. Mater. 31: 802-15.
Maryam Bayat, Elena Pakina, Tamara Astarkhanova, Abdul Nasir Sediqi, Meisam Zargar, Valentin Vvedenskiy (2019). Review on agro-nanotechnology for ameliorating strawberry cultivation. Res. on Crops 20: 731-36.
Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and outlook. Front. Nanotechnol. 2: doi:10. 3389/fnano.2020.579954.
Nandini, B. and Geetha, N. (2021). Smart delivery mechanisms of nanofertilizers and nanocides in crop biotechology. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture. Woodhead Publishing. pp. 385-414.
Owaid, M. N., Zaidan, T. A. and Rasim Farraj Muslim, M. A. H. (2019). Biosynthesis, characterization and cytotoxicity of zinc nanoparticles using Panax ginseng roots, Araliaceae. Acta Pharm. Sci. 57:19-32.
Pal, G., Rai, P. and Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green synthesis, characterization and applications of nanoparticles. Elsevier. pp. 1-26.
Pirzadah, B., Pirzadah, T. B., Jan, A. and Hakeem, K. R. (2020). Nano fertilizers: A Way Forward for Green Economy. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. pp. 99-112.
Prerna, D. I., Govindaraju, K., Tamilselvan, S., Kannan, M., Vasantharaja, R., Chaturvedi, S. and Shkolnik, D. (2021). Influence of nanoscale micronutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol Biochem. 162: 564-80.
Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y. and Reddy, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik. 154: 593-600.
Rajeshkumar, S. and Sivapriya, D. (2020). Fungus-Mediated Nanoparticles: Characterization and Biomedical Advances. In: Shukla, A. (eds) Nanoparticles in Medicine. Springer, Singapore. pp. 185-99.
Rani, A., Singh, R., Singh, C., Singh, M. and Lakhera, K. (2018). Role of nanotechnology in food sector. Biosci. Res. 34: 33-35.
Ranjith, M. and Sridevi, S. (2021). Smart fertilizers as the best option for ecofriendly agriculture. Yigyan Varta. 2: 51-55.
Romanovski, V., Roslyakov, S., Trusov, G., Periakaruppan, R., Romanovskaia, E., Chan, H. L. and Moskovskikh, D. (2023). Synthesis and effect of CoCuFeNi high entropy alloy nanoparticles on seed germination, plant growth, and microorganism’s inactivation activity. ESPR. 30: 23363-71.
Saha, R., Subramani, K., Sikdar, S., Fatma, K. and Rangaraj, S. (2021). Effects of processing parameters on green synthesised ZnO nanoparticles using stem extract of Swertia chirayita. Biocatal. Agric. Biotechnol. 33: doi:10.1016/J.BCAB.2021.101968.
Saheb, M., Hosseini, H. A., Hashemzadeh, A., Elahi, B., Hasanzadeh, L., Oskuee, R. K. and Darroudi, M. (2019). Photocatalytic and biological attributes of green synthesized nickel oxide nanoparticles by Rheum turkestanicum (RT) root extract. Chemistry Select. 4: 2416-20.
Sanaeimehr, Z., Javadi, I. and Namvar, F. (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9: 1-16.
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A. and Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants. 10: doi:10.3390/plants10010002.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y. and Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10: doi:10.3390/plants10020259.
Singh, D. and Gurjar, B. R. (2022). Nanotechnology for agricultural applications: Facts, issues, knowledge gaps, and challenges in environmental risk assessment. Environ. Manag. 322: doi:10.1016/j.jenvman.2022.116033.
Singh, M., Renu, V. K., Upadhyay, S. K., Singh, R., Yadav, M., Seema, S. K. and Manikandan, S. (2021). Biomimetic synthesis of silver nanoparticles from aqueous extract of Saraca indica and its profound antibacterial activity. Biointerface Res. Appl. Chem. 11: 8110-20.
Singh, R., Sharma, I., Sharma, P., Gupta, M., Singhal, P., Goyal, S. and Upadhyay, S. K. (2021). Nanoparticles and nanotechnology: From source, properties, types, synthesis to multifaceted functional potential in agriculture. Biosci. Res. Bull. 37: 23-34.
Singh, R., Upadhyay, S. K., Singh, M., Sharma, I., Sharma, P., Kamboj, P. and Khan, F. (2021). Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res. Appl. Chem. 11: 9985-10005.
Sowbarnika, R., Anhuradha, S. and Preetha, B. (2018). Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. IJNN 14: 33-42.
Subramanian, K. S. V., Karthika, M., Praghadeesh, A. and Lakshmanan (2020). Nanotechnology for mitigation of global warming impacts. In: Global Climate Change: Resilient and Smart Agricultur. (Eds. Venkatramanan, V.; Shah, S.; Prasad, R.). Springer, Singapore. pp. 315-36.
Sundrarajan, M. and Muthulakshmi, V. (2021). Green synthesis of ionic liquid mediated neodymium oxide nanoparticles by Andrographis paniculata leaves extract for effective bio-medical applications. J. Environ. Chem. Eng. 9: doi:10.1016/j.jece.2020.104716.
Tripathi, M., Kumar, S., Kumar, A., Tripathi, P. and Kumar, S. (2018). Agro-nanotechnology: a future technology for sustainable agriculture. Int. J. Curr. Microbiol. Appl. Sci. 7: 196-200.
Tsoraeva, E., Bekmurzov, A., Kozyrev, S., Khoziev, A. and Kozyrev, A. (2020). Environmental issues of agriculture as a consequence of the intensification of the development of agricultural industry. In E3S Web of Conferences, EDP Sci. 215: doi:10.1051/e3sconf/202021502003.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. and Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 721: doi:10.1016/j.scitotenv.2020.137778.
Valojai, S. T. S., Niknejad, Y., Fallah, H. and Tari, D. B. (2021). Effect of nitrogen, phosphorus and potassium nano-fertilizers on growth and seed of two rice (Oryza sativa L.) cultivars. J. Crop Ecophysiol. 15: 549-64.
Vijayanandan, A. S. and Balakrishnan, R. M. (2018). Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. Environ. Manag. 218: 442-50.
WA Al-Juthery, H. and MN Al-Shami, Q. (2019). The effect of fertigation with nano NPK fertilizers on some parameters of growth and yield of potato (Solanum tuberosum L.). AL-Qadisiyah J. Agric. Sci. 9: 225-32.
Yomso, J. and Menon, S. (2021). Impact of nanofertilizers on growth and yield parameters of rice crop: A Review. J. Pharm. Innov. 10: 249-53.
Yugandhar, P., Vasavi, T., Jayavardhana Rao, Y., Uma Maheswari Devi, P., Narasimha, G. and Savithramma, N. (2018). Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J. Clust. Sci. 29: 743-55.
Zargar, M., Rebouh, N., Pakina, E., Gadzhikurbanov, A., Lyashko, M. and Ortskhanov, B (2017). Impact of climate change on cereal production in the highlands of eastern Algeria. Res. on Crops 18: 575-582. doi: 10.5958/2348-7542.2017.00098.5
Zhang, D., Ma, X. L., Gu, Y., Huang, H. and Zhang, G. W. (2023). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 8: doi:10.3389/fchem.2020.00799.
Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H. and Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 68: 1935-47.
Abobatta, W. F. (2018). Nanotechnology application in agriculture. ASAG. 2: 99-102.
Abobatta, W. F. (2019). Impact of Nanotechnology in the Agro-Food sector. Arch. Nano Op Acc. J. 2: 160-63.
Abobatta, W. F. (2021). Precision agriculture: A new tool for development. In Precision Agriculture Technologies for Food Security and Sustainability. pp. 23-45. IGI Global.
Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L. and White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci.: Nano. 6: 2002-30.
Agrimonti, C., Lauro, M. and Visioli, G. (2021). Smart agriculture for food quality: Facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61: 971-81.
Akinsiku, A. A., Dare, E. O., Ajanaku, K. O., Adekoya, J. A. and Ayo-Ajayi, J. (2018). Green synthesized optically active organically capped silver nanoparticles using stem extract of African cucumber (Momordica charantia). J. Mater. Environ. Sci. 3: 902-08.
Ananthi, V., Prakash, G. S., Rasu, K. M., Gangadevi, K., Boobalan, T., Raja, R. and Arun, A. (2018). Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J. Photochem. Photobiol. B. 186: 232-42.
Batiha, G. E. S., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H. and Rashwan, E. K. (2020). Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomol. 10: 202. doi:10.3390/ biom10020202.
Bhoopesh, G., Baradhan, G., Suresh Kumar, S. M., Kathirvelu, C. and Ramesh, S. (2024). Synergistic impact of nano-urea and microbial inoculants with varied nitrogen regimes on the yield and yield attributes of hybrid maize (Zea mays L.). Crop Res. 59: 122-28.
Butt, B. Z. and Naseer, I. (2020). Nanofertilizers. Nanoagronomy, Springer: Berlin/Heidelberg, Germany. pp.125-52.
Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G. and Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomater 10: doi:10.3390/nano10091763.
Cerqueira, M. A., Vicente, A. A. and Pastrana, L. M. (2018). Nanotechnology in food packaging: opportunities and challenges, M. A. P. R Cerqueira, J. M. Lagaron L. M. P. Castro A. A. M., des Oliveira Soares Vicente (Eds.), Nanomaterials for Food Packaging, Elsevier. pp. 1-11. doi:10.1016/C2016-0-01251-2.
Chausali, N., Saxena, J. and Prasad, R. (2022). Recent trends in nanotechnology applications of bio-based packaging. J. Agric. Res. 7: doi:10.1016/j.jafr.2021.100257.
Chen, H. (2018). Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem. Spec. Bioavailab. 30: 123-34.
Cunha, F. A., Cunha, M. D. C., da Frota, S. M., Mallmann, E. J., Freire, T. M., Costa, L. S. and Fechine, P. B. (2018). Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J. Microbiol. Biotechnol. 34: 1-15.
De, A., Das, R., Jain, P. and Kaur, H. (2022). Green chemistry-assisted synthesis of CuO nanoparticles: Reaction optimization, DNA cleavage, and DNA binding studies. Mater. Today Proc. 49: 3122-25.
Devatha, C. P. and Thalla, A. K. (2018). Green synthesis of nanomaterials. In Synthesis of inorganic nanomaterials. Woodhead Publishing. pp: 169-84.
El-Shawa, G. M., Alharbi, K., AlKahtani, M., AlHusnain, L., Attia, K. A. and Abdelaal, K. (2022). Improving the quality and production of philodendron plants using nanoparticles and humic acid. Hortic. 8: doi:10.3390/horticulturae8080678.
Erktan, A., McCormack, M. L. and Roumet, C. (2018). Frontiers in root ecology: recent advances and future challenges. Plant Soil 424: 1-9.
Fatemi, M., Mollania, N., Momeni-Moghaddam, M. and Sadeghifar, F. (2018). Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J. Biotech. 270: 1-11.
Feregrino-Perez, A. A., Magaña-López, E., Guzmán, C. and Esquivel, K. (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci. Hortic. 238: 126-37.
Gilbertson, L. M., Pourzahedi, L., Laughton, S., Gao, X., Zimmerman, J. B., Theis, T. L. and Lowry, G. V. (2020). Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15: 801-10.
Giraldo, J. P., Wu, H., Newkirk, G. M. and Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14: 541-53.
Gomaa, M. A., Radwan, F. I., Kandil, E. E. and Al-Msari, M. A. F. (2018). Response of some Egyptian and Iraqi wheat cultivars to mineral and nanofertilization. Egypt. Acad. J. Bio. Sci. 9: 19-26.
Gu, H., Chen, X., Chen, F., Zhou, X. and Parsaee, Z. (2018). Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem. 41: 109-19.
Ha, N. M. C., Nguyen, T. H., Wang, S. L. and Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Chem. Intermed. 45: 51-63.
Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A. and Kyzas, G. Z. (2022). Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. 97: 375-418.
Husen, A. and Iqbal, M. (2019). Nanomaterials and plant potential: an overview. Springer International Publishing. pp. 3-29.
Iqbal, M. A. (2019). Nano-fertilizers for sustainable crop production under changing climate: a global perspective. Sustain. Crop Prod. 8: 1-13.
Jalal, M., Ansari, M. A., Alzohairy, M. A., Ali, S. G., Khan, H. M., Almatroudi, A. and Raees, K. (2018). Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomater. 8: doi:10.3390/nano8080586.
Javeed, Z., Riaz, U., Murtaza, G., Mehdi, S. M., Idrees, M., Zaman, Q. U. and Khalid, W. (2022). Nanofertilizers and nanopesticides: application and impact on agriculture. In Diverse Applications of Nanotechnology in the Biological Sciences, Apple Academic Press. pp. 199-212.
Jayappa, M. D., Ramaiah, C. K., Kumar, M. A. P., Suresh, D., Prabhu, A., Devasya, R. P. and Sheikh, S. (2020). Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L. characterization and their applications. Appl. Nanosci. 10: 3057-74.
Kalpana, V. N. and Rajeswari, V. D. (2018). A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. appl. 2018: doi:10.1155/2018/3569758.
Kalpana, V. N., Kataru, B. A. S., Sravani, N., Vigneshwari, T., Panneerselvam, A. and Rajeswari, V. D. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano. 3: 48-55.
Kanwal, A., Sharma, I., Bala, A., Upadhyay, S. K. and Singh, R. (2022). Agricultural application of synthesized ZnS nanoparticles for the development of tomato crop. Lett. Appl. NanoBioSci. 12: 1-9.
Kitir, N., Gunes, A., Turan, M., Yildirim, E., Topcuoglu, B., Turker, M. and Fırıldak, G. (2019). Bio-boron fertilizer applications affect amino acid and organic acid content and physiological properties of strawberry plant. Erwerbs Obstbau. 61: 129-37.
Kumar, K. H., Wathugala, D. L. and Hafeel, R. F. (2019). Effect of nano calcite foliar fertilizer on the growth and yield of rice (Oryza sativa). J. Agric. Sci.–Sri Lanka 14: 154-64.
Kumar, M., Saini, R. V., Gupta, M. and Singh, R. (2024). Green synthesis of silver nanoparticle (Cha-AgNPs) using Chenopodium album extract and evaluation of their antifungal potential against pathogenic fungi. Biomass Convers. Biorefin. 1-12. doi:10.1007/s13399-024-05721-z.
Lakhan, M. N., Chen, R., Shar, A. H., Chand, K., Shah, A. H., Ahmed, M., Ali, I., Ahmed, R., Liu, J., Takashi, R. and Wang, J. (2020). Eco-friendly green synthesis of clove buds extracts functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. J. Microbiol. Methods. 173: doi:10.1016/j.mimet.2020.105934.
Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T. and Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala J. Mod. Sci. 4: 61-68.
Lee, Y. J., Song, K., Cha, S. H., Cho, S., Kim, Y. S. and Park, Y. (2019). Sesquiterpenoids from Tussilago farfara flower bud extract for the eco-friendly synthesis of silver and gold nanoparticles possessing antibacterial and anticancer activities. Nanomater 9: doi:10.3390/nano9060819.
Lowry, G. V., Avellan, A. and Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14: 517-22.
Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z. and Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 106: 122-28.
Maceda, A. F., Ouano, J. J. S., Que, M. C. O., Basilia, B. A., Potestas, M. J. and Alguno, A. C. (2018). Controlling the absorption of gold nanoparticles via green synthesis using Sargassum crassifolium extract. KEM 765: 44-48.
Maheshwaran, G., Muneeswari, R. S., Bharathi, A. N., Kumar, M. K. and Sudhahar, S. (2021). Eco-friendly synthesis of lanthanum oxide nanoparticles by Eucalyptus globulus leaf extracts for effective biomedical applications. Mater. Lett. 283: doi:10.1016/j.matlet.2020.128799.
Mahil, E. I. T. and Kumar, B. A. (2019). Foliar application of nanofertilizers in agricultural crops–A review. J. Farm Sci. 32: 239-49.
Mamatha, G., Sowmya, P., Madhuri, D., Mohan Babu, N., Suresh Kumar, D., Vijaya Charan, G. and Madhukar, K. (2021). Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract. J. Inorg. Organomet. Polym. Mater. 31: 802-15.
Maryam Bayat, Elena Pakina, Tamara Astarkhanova, Abdul Nasir Sediqi, Meisam Zargar, Valentin Vvedenskiy (2019). Review on agro-nanotechnology for ameliorating strawberry cultivation. Res. on Crops 20: 731-36.
Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and outlook. Front. Nanotechnol. 2: doi:10. 3389/fnano.2020.579954.
Nandini, B. and Geetha, N. (2021). Smart delivery mechanisms of nanofertilizers and nanocides in crop biotechology. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture. Woodhead Publishing. pp. 385-414.
Owaid, M. N., Zaidan, T. A. and Rasim Farraj Muslim, M. A. H. (2019). Biosynthesis, characterization and cytotoxicity of zinc nanoparticles using Panax ginseng roots, Araliaceae. Acta Pharm. Sci. 57:19-32.
Pal, G., Rai, P. and Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green synthesis, characterization and applications of nanoparticles. Elsevier. pp. 1-26.
Pirzadah, B., Pirzadah, T. B., Jan, A. and Hakeem, K. R. (2020). Nano fertilizers: A Way Forward for Green Economy. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. pp. 99-112.
Prerna, D. I., Govindaraju, K., Tamilselvan, S., Kannan, M., Vasantharaja, R., Chaturvedi, S. and Shkolnik, D. (2021). Influence of nanoscale micronutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol Biochem. 162: 564-80.
Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y. and Reddy, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik. 154: 593-600.
Rajeshkumar, S. and Sivapriya, D. (2020). Fungus-Mediated Nanoparticles: Characterization and Biomedical Advances. In: Shukla, A. (eds) Nanoparticles in Medicine. Springer, Singapore. pp. 185-99.
Rani, A., Singh, R., Singh, C., Singh, M. and Lakhera, K. (2018). Role of nanotechnology in food sector. Biosci. Res. 34: 33-35.
Ranjith, M. and Sridevi, S. (2021). Smart fertilizers as the best option for ecofriendly agriculture. Yigyan Varta. 2: 51-55.
Romanovski, V., Roslyakov, S., Trusov, G., Periakaruppan, R., Romanovskaia, E., Chan, H. L. and Moskovskikh, D. (2023). Synthesis and effect of CoCuFeNi high entropy alloy nanoparticles on seed germination, plant growth, and microorganism’s inactivation activity. ESPR. 30: 23363-71.
Saha, R., Subramani, K., Sikdar, S., Fatma, K. and Rangaraj, S. (2021). Effects of processing parameters on green synthesised ZnO nanoparticles using stem extract of Swertia chirayita. Biocatal. Agric. Biotechnol. 33: doi:10.1016/J.BCAB.2021.101968.
Saheb, M., Hosseini, H. A., Hashemzadeh, A., Elahi, B., Hasanzadeh, L., Oskuee, R. K. and Darroudi, M. (2019). Photocatalytic and biological attributes of green synthesized nickel oxide nanoparticles by Rheum turkestanicum (RT) root extract. Chemistry Select. 4: 2416-20.
Sanaeimehr, Z., Javadi, I. and Namvar, F. (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9: 1-16.
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A. and Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants. 10: doi:10.3390/plants10010002.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y. and Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10: doi:10.3390/plants10020259.
Singh, D. and Gurjar, B. R. (2022). Nanotechnology for agricultural applications: Facts, issues, knowledge gaps, and challenges in environmental risk assessment. Environ. Manag. 322: doi:10.1016/j.jenvman.2022.116033.
Singh, M., Renu, V. K., Upadhyay, S. K., Singh, R., Yadav, M., Seema, S. K. and Manikandan, S. (2021). Biomimetic synthesis of silver nanoparticles from aqueous extract of Saraca indica and its profound antibacterial activity. Biointerface Res. Appl. Chem. 11: 8110-20.
Singh, R., Sharma, I., Sharma, P., Gupta, M., Singhal, P., Goyal, S. and Upadhyay, S. K. (2021). Nanoparticles and nanotechnology: From source, properties, types, synthesis to multifaceted functional potential in agriculture. Biosci. Res. Bull. 37: 23-34.
Singh, R., Upadhyay, S. K., Singh, M., Sharma, I., Sharma, P., Kamboj, P. and Khan, F. (2021). Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res. Appl. Chem. 11: 9985-10005.
Sowbarnika, R., Anhuradha, S. and Preetha, B. (2018). Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. IJNN 14: 33-42.
Subramanian, K. S. V., Karthika, M., Praghadeesh, A. and Lakshmanan (2020). Nanotechnology for mitigation of global warming impacts. In: Global Climate Change: Resilient and Smart Agricultur. (Eds. Venkatramanan, V.; Shah, S.; Prasad, R.). Springer, Singapore. pp. 315-36.
Sundrarajan, M. and Muthulakshmi, V. (2021). Green synthesis of ionic liquid mediated neodymium oxide nanoparticles by Andrographis paniculata leaves extract for effective bio-medical applications. J. Environ. Chem. Eng. 9: doi:10.1016/j.jece.2020.104716.
Tripathi, M., Kumar, S., Kumar, A., Tripathi, P. and Kumar, S. (2018). Agro-nanotechnology: a future technology for sustainable agriculture. Int. J. Curr. Microbiol. Appl. Sci. 7: 196-200.
Tsoraeva, E., Bekmurzov, A., Kozyrev, S., Khoziev, A. and Kozyrev, A. (2020). Environmental issues of agriculture as a consequence of the intensification of the development of agricultural industry. In E3S Web of Conferences, EDP Sci. 215: doi:10.1051/e3sconf/202021502003.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. and Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 721: doi:10.1016/j.scitotenv.2020.137778.
Valojai, S. T. S., Niknejad, Y., Fallah, H. and Tari, D. B. (2021). Effect of nitrogen, phosphorus and potassium nano-fertilizers on growth and seed of two rice (Oryza sativa L.) cultivars. J. Crop Ecophysiol. 15: 549-64.
Vijayanandan, A. S. and Balakrishnan, R. M. (2018). Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. Environ. Manag. 218: 442-50.
WA Al-Juthery, H. and MN Al-Shami, Q. (2019). The effect of fertigation with nano NPK fertilizers on some parameters of growth and yield of potato (Solanum tuberosum L.). AL-Qadisiyah J. Agric. Sci. 9: 225-32.
Yomso, J. and Menon, S. (2021). Impact of nanofertilizers on growth and yield parameters of rice crop: A Review. J. Pharm. Innov. 10: 249-53.
Yugandhar, P., Vasavi, T., Jayavardhana Rao, Y., Uma Maheswari Devi, P., Narasimha, G. and Savithramma, N. (2018). Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J. Clust. Sci. 29: 743-55.
Zargar, M., Rebouh, N., Pakina, E., Gadzhikurbanov, A., Lyashko, M. and Ortskhanov, B (2017). Impact of climate change on cereal production in the highlands of eastern Algeria. Res. on Crops 18: 575-582. doi: 10.5958/2348-7542.2017.00098.5
Zhang, D., Ma, X. L., Gu, Y., Huang, H. and Zhang, G. W. (2023). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 8: doi:10.3389/fchem.2020.00799.
Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H. and Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 68: 1935-47.