Acero, F. J., Carbú, M., El-Akhal, M. R., Garrido, C., González-Rodríguez, V. E. and Cantoral, J. M. (2011). Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int. J. Mol. Sci. 12: 12795-816. doi.org/10.3390%2Fijms12010795.
Ayer, K. M., Villani, S. M., Choi, M. W. and Cox, K. D. (2019). Characterization of the VisdhC and VisdhD genes in Venturia inaequalis, and sensitivity to fluxapyroxad, pydiflumetofen, inpyrfluxam, and benzovindiflupyr. Plant Dis. 103: 1092-1100. doi:10.1094/PDIS-07-18-1225-RE.
Beresford, R., Wright, P., Wood, P. and Park, N. (2012). Sensitivity of Venturia inaequalis to myclobutanil, penconazole and dodine in relation to fungicide use in hawkes bay apple orchards. NZPP 65: 106-13.
Bus, V. G. M., Ranatunga, C., Alspach, P. A., Oraguzie, N. C. and Whitworth C. (2006). A partial diallel study of powdery mildew resistance in six apple cultivars under three growing conditions with different disease pressures. Euphytica 148: 235–42. doi:10.1007/s10681-005-9014-2.
Bus, V. G. M., Rikkerink, E. H., Caffier, V., Durel, C. E. and Plummer, K. M. (2011). Revision of the nomenclature of the differential host-Pathogen interactions of Venturia inaequalis and malus. Annu. Rev. Phytopathol. 49: 391-13. doi:10.1146/ annurev-phyto-072910-095339.
Calenge, F. and Durel, C. E. (2006). Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol. Breed. 17: 329–39. doi:10.1007/s11032-006-9004-7.
Chapman, K. S., Sundin, G. W. and Beckerman, J. L. (2011). Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. Plant Dis. 95: 921-26. doi:10.1094/PDIS-12-10-0899.
Frederick, Z. A., Villani, S. M., Cooley, D. R., Biggs, A. R., Raes, J. J. and Cox, K. D. (2014). Prevalence and stability of qualitative QoI resistance in populations of Venturia inaequalis in the northeastern United States. Plant Dis. 98: 1122-30. doi:10.1094/PDIS-10-13-1042-RE.
Galymbek, K., Madenova, A. K., Bakirov, S. B., Kabylbekova, B. Zh., Irkitbay, A., Aitymbet, Zh., Kaldybayeva, D. I., Abdikarimova, R. and Bolat M. (2023a). Monitoring the distribution and development of apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) disease in the southern and southeast regions of Kazakhstan. Bull. Karaganda Univ. Biol. Med. Geography Series. 110: 38-46.
Galymbek, K., Madenova, A., Bakirov, S. and Kadir, A. (2023c). Phytopathological evaluation of apple scab diseases (Venturia inaequalis Wint). International Scientific Conference of Young Scientists Study and Preservation of the Plant and Animal World. Tashkent, Uzbekistan. pp. 68-72.
Galymbek, K., Madenova, A., Bakirov, S., Akan, K., Kaldybayeva, D., Kabylbekov, B., Aitymbet, Zh. and Bolat, M. (2023b). Monitoring apple scab (Venturia inaequalis) disease in apple farm in Kazakhstan. 100th Anniversary of the Republic Turkey International Ege Agriculture Congress. Institution of Economic Development and Social Researches. Ege University, Izmir, Türkiye. pp. 22-23.
Grigorcevich, L. N. (2010). Protection of fruit trees from diseases in intensive type gardens. Belarusian State Technological University, Belarus.
Gross, B. L., Kellogg, E. A. and Miller, A. J. (2014). Speaking of food: сonnecting basic and applied plant science. Am. J. Bot. 101: 1597-600. doi:10.3732/ajb.1400409.
Gulnaz Ushkempirova, Marina Urazayeva, Saule Kazybayeva and Yuliya Yefremova (2023). Influence of rejuvenating pruning on the potential productivity of the apple tree. Res. Crop. 24: 515-22.
Höfer, M., Flachowsky, H., Schröpfer, S. and Peil, A. (2021). Evaluation of Scab and Mildew resistance in the gene bank collection of apples in dresden-pillnitz. Plants, 10: doi:10. 3390/plants10061227.
Holb, I. J. (2007). Effect of four non-chemical sanitation treatments on leaf infection by Venturia inaequalis in organic apple orchards. European J. Hort. Sci. 72: 60-65.
Holb, I. J. (2016) Effect of six sanitation treatments on leaf litter density, ascospore production of venturia inaequalis and scab incidence in integrated and organic apple orchards. European J. Plant Pathol. 115: 293-307. doi:10.1007/s10658-006-9013-8.
Indenko, I. F. and Smagin, N. E. (2007). Ecologically safe cultivation of apple in the mountainous regions of southern Russia. Subtrop. Orna. Hort. 40: 323–35. (In Russian)
Kabylbekova, B., Kovalchuk, I., Mukhitdinova, Z., Turdiyev, T., Kairova, G., Madiyeva, G. and Reed, B. M. (2020). Reduced major minerals and increased minor nutrients improve micropropagation in three apple cultivars. In Vitro Cell. Dev. Bol.- Plant 56: 335-49. doi:10.1007/s11627-019-10019-1.
Kairova, G., Daulet, N., Solomadin, M., Sandybayev, N., Orkara, S., Beloussov, V., Kerimbek, N., Gritsenko, D. and Sapakhova Z. (2023a). Identification of apple cultivars resistant to fire blight (Erwinia amylovora) using molecular markers. Horticulturae 9: doi:10.3390/ horticulturae9091000.
Kairova, G., Pozharskiy, A., Daulet, N., Solomadin, M., Sandybayev, N., Khusnitdinova, M., Nizamdinova, G., Sapakhova, Z. and Gritsenko, D. (2023b). Evaluation of fire blight resistance of eleven apple rootstocks grown in Kazakhstani fields. Appl. Sci. 13: doi:10. 3390/app132011530.
Kanat, G., Suleimanova, G., Irkitbay, А., Madenova, A. and Aitymbet Z. (2021) Fungal diseases of apple trees in Kazakhstan. Perspectives of Development of Science and Practice Abstracts of XIII International Scientific and Practical Conference. Prague, Czech Republic.
Lespinasse, Y., Durel, C. E., Laurens, F., Parisi, L., Chevalier, M. and Pinet, C. A. (2000). European project: DARE-durable apple resistance in Europe (FAIR5 CT97-3898) durable resistance of apple to scab and powdery-mildew: one step more towards an environmental friendly orchard. Acta Horticulturae 538: 197-200.
Madenova, A., Aitymbet, Zh., Bolat, M., Kaldybayeva, D., Galymbek, K., Kuan, A., Kabylbekova, B., Irkitbay, A., Yeszhanov, T., Bakirov, S. and Sapakhova, Z. (2024). Screening of apple cultivars for scab resistance in Kazakhstan. Horticulturae 10: doi:10.3390/horticulturae10020184.
Nicolae, I. and Bușe-Dragomir, L. (2020). The influence of fungicides on the physiological processes’ intensity in Malus domestica Borkh attacked by Podosphaera leucotricha (Ellis & Everh.) E. S. Salmon. Ann. Univ. Craiova-Agric. 49: 117-24.
Papp, D., Singh, J., Gadoury, D. and Khan, A. (2020). New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis. 104: 649–55.
Patocchi, A., Wehrli, A., Dubuis, P. H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V. and Peil, A. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis. 104: 2074–81.
Peace, C. Р., Luby, J. J., van de Weg W. E., Bink, M. C. A. M. and Iezzoni, A. F. (2014). A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Gen. Genom. 10: 1679-94. doi:10.1007/s11295-014-0788-z.
Porsche, F. M., Pfeiffer, B. and Kollar, A. A (2017). New phytosanitary method to reduce the ascospore potential of Venturia inaequalis. Plant Dis. 101: 414-20. doi:10.1094/pdis-07-16-0994-re.
Saoir, S. M. A. and Cooke, L. R. (2010). The effects of leaf litter treatments, post-harvest urea and omission of early season fungicide sprays on the overwintering of apple scab on Bramley's Seedling grown in a maritime environment. Irish J. Agric. Food Res. 1: 55-66.
Shamraj, S. N. and Glushhenko, V. I. (2006). The Basics of Field Research in Phytopathology and Phytoimmunology: Teaching and Methodological Manual. HNU by V. N. Karazin. pp. 64.
Suprun, I. I., Nasonov, A. I., Jakuba, G. V., Lobodina, E. V. and Barsukova, O. N (2016). Efficiency of the selection of apple seeds in school on resistance to scab and mildew. Fruit Prod.Viticult. South Russia. 38: 117-29. URL: https://elibrary.ru/item. asp?id=25647153&. (In Russian)
Susuri, L. R., Susuri, H. S. and Muja, I. Z. (2000). Podosphaera leucotricha and reaction of some apple cultivars. Agronomski glasnik. 63: 29–39.
Ulyanovskaya, E. V., Suprun, I. I., Sedov, E. N., Sedysheva, G. A. and Serova, Z. M. (2011). Creation of the apple-tree genotypes immune to scab and with complex of valuable agrobiological traits. Fruit Growing Viticult. South Russia 10: 14–30. (In Russian)
Urbanovich, O. Yu., Kozlovskaya, Z. A. and Kartel, N. A. (2010) Spread of mildew resistance genes in the collection of apple cultivars and species grown in Belarus. Mol. Appl. Genet. 1: 20–25. (In Russian)
Yakuba, G. V. (2016). Apple technologies protection from diseases with domestic fungicides application. Hort. Viticult. 4: 33–39. doi:10.18454/VSTISP.2016.4.2841 (In Russian).
Ayer, K. M., Villani, S. M., Choi, M. W. and Cox, K. D. (2019). Characterization of the VisdhC and VisdhD genes in Venturia inaequalis, and sensitivity to fluxapyroxad, pydiflumetofen, inpyrfluxam, and benzovindiflupyr. Plant Dis. 103: 1092-1100. doi:10.1094/PDIS-07-18-1225-RE.
Beresford, R., Wright, P., Wood, P. and Park, N. (2012). Sensitivity of Venturia inaequalis to myclobutanil, penconazole and dodine in relation to fungicide use in hawkes bay apple orchards. NZPP 65: 106-13.
Bus, V. G. M., Ranatunga, C., Alspach, P. A., Oraguzie, N. C. and Whitworth C. (2006). A partial diallel study of powdery mildew resistance in six apple cultivars under three growing conditions with different disease pressures. Euphytica 148: 235–42. doi:10.1007/s10681-005-9014-2.
Bus, V. G. M., Rikkerink, E. H., Caffier, V., Durel, C. E. and Plummer, K. M. (2011). Revision of the nomenclature of the differential host-Pathogen interactions of Venturia inaequalis and malus. Annu. Rev. Phytopathol. 49: 391-13. doi:10.1146/ annurev-phyto-072910-095339.
Calenge, F. and Durel, C. E. (2006). Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol. Breed. 17: 329–39. doi:10.1007/s11032-006-9004-7.
Chapman, K. S., Sundin, G. W. and Beckerman, J. L. (2011). Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. Plant Dis. 95: 921-26. doi:10.1094/PDIS-12-10-0899.
Frederick, Z. A., Villani, S. M., Cooley, D. R., Biggs, A. R., Raes, J. J. and Cox, K. D. (2014). Prevalence and stability of qualitative QoI resistance in populations of Venturia inaequalis in the northeastern United States. Plant Dis. 98: 1122-30. doi:10.1094/PDIS-10-13-1042-RE.
Galymbek, K., Madenova, A. K., Bakirov, S. B., Kabylbekova, B. Zh., Irkitbay, A., Aitymbet, Zh., Kaldybayeva, D. I., Abdikarimova, R. and Bolat M. (2023a). Monitoring the distribution and development of apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) disease in the southern and southeast regions of Kazakhstan. Bull. Karaganda Univ. Biol. Med. Geography Series. 110: 38-46.
Galymbek, K., Madenova, A., Bakirov, S. and Kadir, A. (2023c). Phytopathological evaluation of apple scab diseases (Venturia inaequalis Wint). International Scientific Conference of Young Scientists Study and Preservation of the Plant and Animal World. Tashkent, Uzbekistan. pp. 68-72.
Galymbek, K., Madenova, A., Bakirov, S., Akan, K., Kaldybayeva, D., Kabylbekov, B., Aitymbet, Zh. and Bolat, M. (2023b). Monitoring apple scab (Venturia inaequalis) disease in apple farm in Kazakhstan. 100th Anniversary of the Republic Turkey International Ege Agriculture Congress. Institution of Economic Development and Social Researches. Ege University, Izmir, Türkiye. pp. 22-23.
Grigorcevich, L. N. (2010). Protection of fruit trees from diseases in intensive type gardens. Belarusian State Technological University, Belarus.
Gross, B. L., Kellogg, E. A. and Miller, A. J. (2014). Speaking of food: сonnecting basic and applied plant science. Am. J. Bot. 101: 1597-600. doi:10.3732/ajb.1400409.
Gulnaz Ushkempirova, Marina Urazayeva, Saule Kazybayeva and Yuliya Yefremova (2023). Influence of rejuvenating pruning on the potential productivity of the apple tree. Res. Crop. 24: 515-22.
Höfer, M., Flachowsky, H., Schröpfer, S. and Peil, A. (2021). Evaluation of Scab and Mildew resistance in the gene bank collection of apples in dresden-pillnitz. Plants, 10: doi:10. 3390/plants10061227.
Holb, I. J. (2007). Effect of four non-chemical sanitation treatments on leaf infection by Venturia inaequalis in organic apple orchards. European J. Hort. Sci. 72: 60-65.
Holb, I. J. (2016) Effect of six sanitation treatments on leaf litter density, ascospore production of venturia inaequalis and scab incidence in integrated and organic apple orchards. European J. Plant Pathol. 115: 293-307. doi:10.1007/s10658-006-9013-8.
Indenko, I. F. and Smagin, N. E. (2007). Ecologically safe cultivation of apple in the mountainous regions of southern Russia. Subtrop. Orna. Hort. 40: 323–35. (In Russian)
Kabylbekova, B., Kovalchuk, I., Mukhitdinova, Z., Turdiyev, T., Kairova, G., Madiyeva, G. and Reed, B. M. (2020). Reduced major minerals and increased minor nutrients improve micropropagation in three apple cultivars. In Vitro Cell. Dev. Bol.- Plant 56: 335-49. doi:10.1007/s11627-019-10019-1.
Kairova, G., Daulet, N., Solomadin, M., Sandybayev, N., Orkara, S., Beloussov, V., Kerimbek, N., Gritsenko, D. and Sapakhova Z. (2023a). Identification of apple cultivars resistant to fire blight (Erwinia amylovora) using molecular markers. Horticulturae 9: doi:10.3390/ horticulturae9091000.
Kairova, G., Pozharskiy, A., Daulet, N., Solomadin, M., Sandybayev, N., Khusnitdinova, M., Nizamdinova, G., Sapakhova, Z. and Gritsenko, D. (2023b). Evaluation of fire blight resistance of eleven apple rootstocks grown in Kazakhstani fields. Appl. Sci. 13: doi:10. 3390/app132011530.
Kanat, G., Suleimanova, G., Irkitbay, А., Madenova, A. and Aitymbet Z. (2021) Fungal diseases of apple trees in Kazakhstan. Perspectives of Development of Science and Practice Abstracts of XIII International Scientific and Practical Conference. Prague, Czech Republic.
Lespinasse, Y., Durel, C. E., Laurens, F., Parisi, L., Chevalier, M. and Pinet, C. A. (2000). European project: DARE-durable apple resistance in Europe (FAIR5 CT97-3898) durable resistance of apple to scab and powdery-mildew: one step more towards an environmental friendly orchard. Acta Horticulturae 538: 197-200.
Madenova, A., Aitymbet, Zh., Bolat, M., Kaldybayeva, D., Galymbek, K., Kuan, A., Kabylbekova, B., Irkitbay, A., Yeszhanov, T., Bakirov, S. and Sapakhova, Z. (2024). Screening of apple cultivars for scab resistance in Kazakhstan. Horticulturae 10: doi:10.3390/horticulturae10020184.
Nicolae, I. and Bușe-Dragomir, L. (2020). The influence of fungicides on the physiological processes’ intensity in Malus domestica Borkh attacked by Podosphaera leucotricha (Ellis & Everh.) E. S. Salmon. Ann. Univ. Craiova-Agric. 49: 117-24.
Papp, D., Singh, J., Gadoury, D. and Khan, A. (2020). New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis. 104: 649–55.
Patocchi, A., Wehrli, A., Dubuis, P. H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V. and Peil, A. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis. 104: 2074–81.
Peace, C. Р., Luby, J. J., van de Weg W. E., Bink, M. C. A. M. and Iezzoni, A. F. (2014). A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Gen. Genom. 10: 1679-94. doi:10.1007/s11295-014-0788-z.
Porsche, F. M., Pfeiffer, B. and Kollar, A. A (2017). New phytosanitary method to reduce the ascospore potential of Venturia inaequalis. Plant Dis. 101: 414-20. doi:10.1094/pdis-07-16-0994-re.
Saoir, S. M. A. and Cooke, L. R. (2010). The effects of leaf litter treatments, post-harvest urea and omission of early season fungicide sprays on the overwintering of apple scab on Bramley's Seedling grown in a maritime environment. Irish J. Agric. Food Res. 1: 55-66.
Shamraj, S. N. and Glushhenko, V. I. (2006). The Basics of Field Research in Phytopathology and Phytoimmunology: Teaching and Methodological Manual. HNU by V. N. Karazin. pp. 64.
Suprun, I. I., Nasonov, A. I., Jakuba, G. V., Lobodina, E. V. and Barsukova, O. N (2016). Efficiency of the selection of apple seeds in school on resistance to scab and mildew. Fruit Prod.Viticult. South Russia. 38: 117-29. URL: https://elibrary.ru/item. asp?id=25647153&. (In Russian)
Susuri, L. R., Susuri, H. S. and Muja, I. Z. (2000). Podosphaera leucotricha and reaction of some apple cultivars. Agronomski glasnik. 63: 29–39.
Ulyanovskaya, E. V., Suprun, I. I., Sedov, E. N., Sedysheva, G. A. and Serova, Z. M. (2011). Creation of the apple-tree genotypes immune to scab and with complex of valuable agrobiological traits. Fruit Growing Viticult. South Russia 10: 14–30. (In Russian)
Urbanovich, O. Yu., Kozlovskaya, Z. A. and Kartel, N. A. (2010) Spread of mildew resistance genes in the collection of apple cultivars and species grown in Belarus. Mol. Appl. Genet. 1: 20–25. (In Russian)
Yakuba, G. V. (2016). Apple technologies protection from diseases with domestic fungicides application. Hort. Viticult. 4: 33–39. doi:10.18454/VSTISP.2016.4.2841 (In Russian).