Loading...

Enhancing drought resistance in early-stage development of spring soft wheat (Triticum aestivum L.) using trace elements in a dry steppe zone

Citation :- Enhancing drought resistance in early-stage development of spring soft wheat (Triticum aestivum L.) using trace elements in a dry steppe zone. Res. Crop. 25: 394-402
PAUL LUTSCHAK, BEKZAK AMANTAYEV, GULDEN KIPSHAKBAYEVA, GANI STYBAYEV, MEISAM ZARGAR, DMITRIY EBZEEV AND MEYSAM SOLTANI NEJAD zargar_m@pfur.ru
Address : Department of Plant Production, Faculty of Agronomy, S. Seifullin Kazakh Agrotechnical University, Astana 010000, Kazakhstan
Submitted Date : 9-06-2024
Accepted Date : 1-08-2024

Abstract

Wheat, prized for its economic significance, is the predominant crop globally. However, drought stress has emerged as a critical constraint in wheat production, increasingly limiting growth and productivity across major wheat-growing regions worldwide. Therefore, the present study assesses the impact of trace elements silicon, zinc, and manganese on the morphological characteristics of seed germination in spring soft wheat varieties (Taimas, Granny) under both normal and drought stress conditions in 2023. To achieve this, wheat seeds were subjected to varying concentrations of microelements (Si+Zn+Mn) during germination under controlled drought and regular conditions. The most significant beneficial combined effect of the three metals was observed when Si (0.25) + Zn (0.5) + Mn (0.5) was present at a concentration level, resulting in improvements in key germination parameters such as the germination index (GI) and the shoot viability index (SVI). Under drought stress conditions, utilizing the ideal concentrations of trace elements led to a notable increase in germination rates, ranging from 94.07% to 95.23%. The findings indicated that the presence of trace elements resulted in a suppressive impact, which became evident as the concentration of metals increased in the measurements of roots, shoots, and the phytotoxicity index.

Keywords

Drought stress elements germination phytotoxicity seed priming wheat

References

Ahmed, M., Qadeer, U., Ahmed, Z. I. and Hassan, F. (2015). Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch. Agron. Soil Sci. 62: 299–15. doi:10.1080/03650340.2015.1048235.
Anwar, S., Khalilzadeh, R., Khan, S., Nisa, Z., Bashir, R., Pirzad, A. and Malik, A. (2021). Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. Int. J. Plant Prod. 15: 377–89. doi:10.1007/s42106-021-00136-6.
Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv. 28: 169–83. doi:10.1016/j.biotechadv.2009.11.005.
Barbero, P., Beltrami, M., Baudo, R. and Rossi, D. (2001). Assessment of Lake Orta sediments phytotoxicity after the liming treatment. J. Limnology 60: 269-76. doi:10. 4081/jlimnol.2001.1.269.
Bayat, M., Engeribo, A., Meretukov, Z., Aigerim, A., Temewei, A. G., Dubrovina, T. and Zargar, M. (2019a). Response of common lambsquarters (Chenopodium album L.) to chemical weed control programs. Res. on Crops 20: 859-63. doi:10.31830/2348-7542.2019.127.
Bayat, M., Pakina, E., Astarkhanova, T., Sediqi, A. N., Zargar, M. and Vvedenskiy, V. (2019b). Review on agro-nanotechnology for ameliorating strawberry cultivation. Res. on Crops 20: 731-36. doi:10.31830/2348-7542.2019.108.
Burlutskiy, V. A., Peliy, A. F., Borodina, E. S., Diop, A. Batygin, A. S., Zargar, M. and Plushchikov, V. G. (2020). Efficiency of advanced sprayers for nutrient and pesticide application under precision cultivation of spring rapeseed (Brassica napus). Res. on Crops 21: 466-72. doi:10.31830/2348-7542.2020.074.
Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J. and Braun, H. J. (2022). Global trends in wheat production, consumption and trade. In: Reynolds, M. P., Braun, H. J. (eds) Wheat Improvement. Springer, Cham. doi:10.1007/978-3-030-90673-3_4.
Ghadamkheir, M., Vladimirovich, K. P., Orujov, E., Bayat, M., Madumarov, M. M., Avdotyin, V. and Zargar, M. (2020) Influence of sulfur fertilization on infection of wheat take‐all disease caused by the fungus Gaeumannomyces graminis var. tritici. Res. on Crops 21: 627–33.  doi:10.31830/2348-7542.2020.098.  
Ghassemi-Golezani, K., Aliloo, A. A., Valizadeh, M. and Moghaddam, M. (2008). Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 36: 29–33. doi:10.15835/nbha36186.
Guo, X., Ma, X., Zhang, J., Zhu, J., Lu, T., Wang, Q., Wang,  X., Hua, W. and  Xu, S. (2021). Meta-analysis of the role of zinc in coordinating absorption of mineral elements in wheat seedlings. Plant Methods 17: doi:10.1186/s13007-021-00805-7.
Hellal, F. A., El-Shabrawi, H. M., Abd El-Hady, M., Khatab., I. A., El-Sayed, S. A. A. and Abdelly, C. (2018). Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 16: 203-12. doi:10.1016/j.jgeb.2017.10.009.
Karatayev, M., Clarke, M., Salnikov, V., Bekseitova, R. and Nizamova, M. (2022). Monitoring climate change, drought conditions and wheat production in Eurasia: the case study of Kazakhstan. Heliyon 8: doi:10.1016/j.heliyon.2021.e08660.
Khitakhunov, A. (2020). Analysis of the global wheat market. In: Eurasian Research Institute. https://www.eurasian-research.org/publication/analysis-of-the-global-wheat-market/. 
Li, Y., Xi, K., Liu, X., Han, S., Han, X., Li, G., Yang, L., Ma, D., Fang, Z., Gong, S., Yin, J. and Zhu, Y. (2023). Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J. Nanobiotechnol. 21: doi:10.1186/s12951-022-01753-7.
Lioubimtseva, E. and Henebry, G. M. (2012). Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world? Front. Earth Sci. 6: 157-66. doi:10.1007/s11707-012-0318-y.
Manzoor, M. A., Xu, Y. and Zhengxin, L. (2024). Nanotechnology-based approaches for promoting horticulture crop growth, antioxidant response and abiotic stresses tolerance. Plant Stress 11: doi:10.1016/j.stress.2023.100337.
Marks, Z., Cowley, J. M., Bianco‐Miotto, T. and Burton, R. A. (2022). The role of oxidative stress in seed priming to improve germination and vigour. bioRxiv (Cold Spring Harbor Laboratory). doi:10.1101/2022.06.05.494903.
Michel, B. E. and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51: 914–16. doi:10.1104/pp.51.5.914.
Mondal, S. and Bose, B. (2019). Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. J. Plant Nutr. 42: 2577–99. doi:10.1080/01904167.2019.1655032.
Moreno-Jiménez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M. and Maestre, F. T. (2019). Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2: 371–77. doi:10.1038/s41893-019-0262-x.
Mukhambetov, B., Nasiyev, B. and Abdinov, R. (2023). Influence of soil and climatic conditions on the chemical composition and nutritional value of Kochia prostrata feed in the arid zone of Western Kazakhstan. Caspian J. Environ. Sci. 21: 853–63. doi:10.22124/cjes. 2023.7134.
Naserzadeh, Y., Kartoolinejad, D., Mahmoudi, N., Zargar, M., Pakina, E., Heydari, M., Astarkhanova, T. and Kavhiza, N. J. (2018). Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices, seed and yield production of Carthamus tinctorius L. Res. on Crops. 19: 622-32. doi:10.31830/2348-7542.2018.0001.39.
Nawaz, F., Ashraf, M., Ahmad, R. and Ejaz, A. (2012). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol. Trace Elem. Res. 151: 284–93. doi:10.1007/s12011-012-9556-9.
Nile, S. H., Thiruvengadam, M. and Wang, Y. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. J. Nanobiotechnol. 20: doi:10.1186/s12951-022-01423-8.
Pavlova, V. N., Varcheva, S. E., Raushan, B. and Pierluigi, C. (2014). Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan. Ecol. Modell.  277: 57–67. doi:10.1016/j.ecolmodel.2014.01.014.
Qamari, F., Shekari, K. and Afsahi, I. (2023). Response of wheat cultivars to zinc application for seed yield and quality improvement. J. Agric. Sci. 161: 549–62. doi:10.1017/ s0021859623000473.
Shakouri, M. J., Vajargah, A. V., Gavabar, M. G., Mafakheri, S. and Zargar, M (2012). Rice vegetative response to different biological and chemical fertilizers. Adv. Environ. Biol. 6: 859–62.
Singhal, R. K., Pandey, S. and Bose, B. (2021). Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress 2: doi:10.1016/j.stress.2021.100037.
Wan, C., Dang, P. and Gao, L. (2022). How does the environment affect wheat yield and protein content response to drought? A Meta-Analysis. Front. Plant Sci. 13: doi:10.3389 /fpls.2022.896985.
Yang, J., Yang, R. and Liang, X. (2023) Impact of drought stress on spring wheat grain yield and quality. Agrosystems Geosciences Environment 6: doi:10.1002/agg2.20351.
Zargar, M., Bodner, G., Tumanyan, A., Tyutyuma, N. Plushikov, V., Pakina, E., Shcherbakova, N. and Bayat, M. (2018). Productivity of various barley (Hordeum vulgare L.) cultivars under semi-arid conditions in southern Russia. Agron. Res. 16: 2242-53.
Zargar, M., Najafi, H., Fakhri, K., Mafakheri, S. and Sarajuoghi, M. (2011). Agronomic evaluation of mechanical and chemical weed management for reducing use of herbicides in single vs. twin row sugar-beet. Res. on Crops. 12: 173-78.
Zargar, M., Pakina, E., Plushikov, V., Vvedenskiy, V and Bayat, M. (2017). Efficacy of reducing linture doses and biological components for an effective weed control in wheat fields. Bulg. J. Agric. Sci. 23: 980-87.
 
 

Global Footprints