Loading...

Analysis of mitochondrial DNA to estimate the population genetic structure of Tuta absoluta (Meyrick, 1917)


Citation :- Analysis of mitochondrial DNA to estimate the population genetic structure of Tuta absoluta (Meyrick, 1917). Res. Crop. 25: 472-475
GAVIN GELDENHUYS gavin.geldenhuys@ul.ac.za
Address : Aquaculture Research Unit, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
Submitted Date : 27-02-2024
Accepted Date : 6-08-2024

Abstract

Tuta absoluta (Meyrick) has become a serious menace to the sustainable production of tomatoes in Kenya. Investigating the genetic diversity, geographical distribution, and community structure of T. absoluta from various locations utilizing the Cytochrome c oxidase I (COI) of the mtDNA gene information available on NCBI databases. Based on the COI of mtDNA, the haplotype analysis revealed six haplotypes, which displayed low nucleotide (π = 0.00021) diversity. In contrast, haplotype diversity (Hd) was 0.05, and the number of segregating sites (S) was 13. The result showed that the tomato leaf miner population from Central Kenya had high variability in haplotype supported by the haplotype network. Tajima (D) and Fu's Fs were found to be negative (P > 0.05), whereas the overall FST value was 0.00077 (P > 0.001). In conclusion, genetic analysis showed there was no high variation amongst population from different locations.

Keywords

Genetic analysis haplotype diversity mitochondrial DNA Tuta absoluta

References

Antoniou, A. and Magoulas, A. (2014). Application of mitochondrial DNA in stock identification. Stock identification methods, 2nd edn. Academic Press, Cambridge. pp. 257–95. doi:10.1016/ B978-0-12-397003-9.00013-8.
Barasa, J. E., Abila, R., Grobler, J. P., Dangasuk, O. G., Njahira, M. N. and Kaunda-Arara, B. (2014). Genetic diversity and gene flow in Clarias gariepinus from Lakes Victoria and Kanyaboli, Kenya. Afr. J. Aquat. Sci. 39: 287–93. doi:10.2989/16085914.2014.933734.
Biondi, A., Guedes R. N. C., Wan, F. H. and Desneux, N. (2018). Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63: 239-58. doi:10.1146/annurev-ento-031616-034933.
Excoffier, L. and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Biol. Evol. 10: 564-67.  doi:10.1111/j.1755-0998.2010.02847.x.
FAO (2020). FAO year book, Fishery and aquaculture statistics, Food and Agriculture Organization of the United Nations, Rome.
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–25. doi:10.1093/genetics/147.2.915.
Han, P., Zhang, Y., Lu, Z., Wang, S., Ma, D., Biondi, A. and Desneux, N. (2018). Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an Integrated Pest Manag package in Xinjiang, China. Entomologia Generalis 38: doi:10.1127/ entomologia/2018/0739.
Kinyanjui, G., Khamis, F. M., Ombura, F. L. O., Kenya, E. U., Ekesi, S. and Mohamed, S. A. (2021). Distribution, abundance and natural enemies of the invasive tomato leafminer, Tuta absoluta (Meyrick) in Kenya. Bull. Entomol. Res. 17:1-16. doi:10.1017/S0007485321000304.
Mansour, R., Brévault, T., Chailleux, A., Cherif, A., Grissa-Lebdi, K., Haddi, K., Mohamed, S. A., Nofemela, R. S., Oke, A., Sylla, S., Tonnang, H. E. Z., Zappalà, L., Kenis, M., Desneux, N. and Biondi, A. (2018). Occurrence, biology, natural enemies, and management of Tuta absoluta in Africa. Entomologia Generalis 38: 83-112. doi:10.1127/ENTOMOLOGIA/2018/0749.
Mwakubo, S. M., Ikiara, M. M. and Abila, R. (2007). Socio-economic and ecological determinants in wetland fisheries in the Yala Swamp. Wetl. Ecol. Manag. 15: 521-28. doi:10.1007/s11273-007-9053-7.
Pratt, C. F., Constantine, K. L. and Murphy, S. T. (2017). Economic impacts of invasive alien species on African smallholder livelihoods. Global Food Security 14: 31–37. doi:10.1016/ j.gfs.2017.01.011.
Rozas, J., Ferrer-Mata, A., Sanchez-Delbarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins S. E. and Sanchez-Gracia, A. (2017). DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34: 3299-302. doi:10.1093/molbev/msx248.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–95. doi:10.1093/genetics/123.3.585.
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–80. doi:10. 1093/nar/22.22.4673.
Wafula, G. O., Waceke, J. W. and Macharia, C. M. (2018). Role of mass trapping in the management of leaf miner (Tuta absoluta) on tomato in the central highlands of Kenya. J.  Agric. Life Sci. 5: 28–33. doi:10.30845/jals.v5n1p4.

Global Footprints