Abd El-Rahman, A. and Shaheen, H. A. (2016). Biological control of the brown rot of potato, Ralstonia solanacearum and effect of bacterization with antagonists on the promotion of potato growth. Egyptian J. Biol. Pest Control 26: 733-39.
Abo-Elyousr, K. A. and Hassan, S. A. (2021). Biological control of Ralstonia solanacearum (Smith), the causal pathogen of bacterial wilt disease using Pantoea spp. Egyptian J. Biol. Pest Control 31: 1–8. doi:10.1186/s41938-021-00460-z.
Ahmed, W., Yang, J., Tan, Y., Munir, S., Liu, Q., Zhang, J., Ji, G. and Zhao, Z. (2022). Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21: doi:10.1016/j.rhisph.2022.100479.
Batista, B. D., Lacava, P. T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Kitajima, E. W., Pereira, J. O. and Azevedo, J. L. (2018). Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol. Res. 206: 33-42. doi:10.1016/j.micres.2017.09.007.
El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. and Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits, and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5: doi:10.3389/fmicb.2014.00651.
Elsharkawy, M., Derbalah, A., Hamza, A. and El-Shaer, A. (2020). Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 27: 19049-057. doi:10.1007/s11356-018-3806-0.
Kashyap, A. S., Manzar, N., Meshram, S. and Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops - a step toward sustainable agriculture. Front. Microbiol. 14: doi:10.3389/fmicb.2023.1174532.
Mohammed, A. F., Oloyede, A. R. and Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Pl. Protect. 53: doi:10. 1080/03235408.2020.1715756.
Onwona-Kwakye, M., Plants-Paris, K., Keita, K., Lee, J., Brink, P. J., Hogarh, J. N. and Darkoh, C. (2020). Pesticides decrease bacterial diversity and abundance of irrigated rice fields. Microorganisms 8: doi:10.3390/microorganisms8030318.
Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A. and Antonius, S. (2023). IAA and ACC deaminase-producing bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 9: doi:10.1016/j.heliyon.2023.e16306.
Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q. and Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 192: 103-13. doi:10. 1016/j.micres.2016.05.014.
Rekha Jangir, Indu Singh Sankhla and Kailash Agrawal (2018). Characterization, incidence, transmission and biological control of Ralstonia solanacearum associated with soybean [Glycine max (L.) Merrill] in Rajasthan, India. Res. Crop. 19: 472-79.
Rizvi, A., Chandrawal, R., Khan, M. H., Ahmed, B., Umar, S. and Khan, M. S. (2023). Microbiological control of Xanthomonas-induced bacterial leaf streak disease of wheat via phytocompounds and ROS processing enzymes produced under biotic stress. J. Pl. Growth Regulat. 24: 1-23. doi:10.1007/s.00344-023-11119-4.
Shivalingaiah, U. S. and Umesha, S. (2013). Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Can. J. Pl. Protect. 1: 147-53.
Shoaib, M., Hussain, T., Shah, B., Ullah, I., Shah, S.M., Ali, F. and Park, S. H. (2022). Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Pl. Sci. 13: doi:10.3389/fpls.2022.1031748.
Simbo Diakite, Elena Pakina, Meisam Zargar, Ahmed Abdalbare A Dire Aldaibe, Parpura Denis, Lapshin Gregory and Abdullah Behzad (2022). Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Research on Crops 23: 418-36.
Szentes, S., Radu, G. L., Laslo, É., Lányi, S. and Mara, G. (2013). Selection and evaluation of potential biocontrol rhizobacteria from a raised bog environment. Crop Protect. 52: 116-24. doi:10.1016/J.CROPRO.2013.05.021.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Rev. Microbiol. 18: 607-21. doi:10.1038/s41579-020-0412-1.
Ullah, S., Bano, A., Ullah, A., Shahid, M. A. and Khan, N. (2022). A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere 23: doi:10.1016/j.rhisph.2022.100571.
UNDESA (2015) The world population prospects: Revision.https://www.un.org/en/ development/desa/publications/world-population-prospects-2015-revision.
Abo-Elyousr, K. A. and Hassan, S. A. (2021). Biological control of Ralstonia solanacearum (Smith), the causal pathogen of bacterial wilt disease using Pantoea spp. Egyptian J. Biol. Pest Control 31: 1–8. doi:10.1186/s41938-021-00460-z.
Ahmed, W., Yang, J., Tan, Y., Munir, S., Liu, Q., Zhang, J., Ji, G. and Zhao, Z. (2022). Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21: doi:10.1016/j.rhisph.2022.100479.
Batista, B. D., Lacava, P. T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Kitajima, E. W., Pereira, J. O. and Azevedo, J. L. (2018). Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol. Res. 206: 33-42. doi:10.1016/j.micres.2017.09.007.
El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. and Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits, and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5: doi:10.3389/fmicb.2014.00651.
Elsharkawy, M., Derbalah, A., Hamza, A. and El-Shaer, A. (2020). Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 27: 19049-057. doi:10.1007/s11356-018-3806-0.
Kashyap, A. S., Manzar, N., Meshram, S. and Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops - a step toward sustainable agriculture. Front. Microbiol. 14: doi:10.3389/fmicb.2023.1174532.
Mohammed, A. F., Oloyede, A. R. and Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Pl. Protect. 53: doi:10. 1080/03235408.2020.1715756.
Onwona-Kwakye, M., Plants-Paris, K., Keita, K., Lee, J., Brink, P. J., Hogarh, J. N. and Darkoh, C. (2020). Pesticides decrease bacterial diversity and abundance of irrigated rice fields. Microorganisms 8: doi:10.3390/microorganisms8030318.
Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A. and Antonius, S. (2023). IAA and ACC deaminase-producing bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 9: doi:10.1016/j.heliyon.2023.e16306.
Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q. and Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 192: 103-13. doi:10. 1016/j.micres.2016.05.014.
Rekha Jangir, Indu Singh Sankhla and Kailash Agrawal (2018). Characterization, incidence, transmission and biological control of Ralstonia solanacearum associated with soybean [Glycine max (L.) Merrill] in Rajasthan, India. Res. Crop. 19: 472-79.
Rizvi, A., Chandrawal, R., Khan, M. H., Ahmed, B., Umar, S. and Khan, M. S. (2023). Microbiological control of Xanthomonas-induced bacterial leaf streak disease of wheat via phytocompounds and ROS processing enzymes produced under biotic stress. J. Pl. Growth Regulat. 24: 1-23. doi:10.1007/s.00344-023-11119-4.
Shivalingaiah, U. S. and Umesha, S. (2013). Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Can. J. Pl. Protect. 1: 147-53.
Shoaib, M., Hussain, T., Shah, B., Ullah, I., Shah, S.M., Ali, F. and Park, S. H. (2022). Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Pl. Sci. 13: doi:10.3389/fpls.2022.1031748.
Simbo Diakite, Elena Pakina, Meisam Zargar, Ahmed Abdalbare A Dire Aldaibe, Parpura Denis, Lapshin Gregory and Abdullah Behzad (2022). Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Research on Crops 23: 418-36.
Szentes, S., Radu, G. L., Laslo, É., Lányi, S. and Mara, G. (2013). Selection and evaluation of potential biocontrol rhizobacteria from a raised bog environment. Crop Protect. 52: 116-24. doi:10.1016/J.CROPRO.2013.05.021.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Rev. Microbiol. 18: 607-21. doi:10.1038/s41579-020-0412-1.
Ullah, S., Bano, A., Ullah, A., Shahid, M. A. and Khan, N. (2022). A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere 23: doi:10.1016/j.rhisph.2022.100571.
UNDESA (2015) The world population prospects: Revision.https://www.un.org/en/ development/desa/publications/world-population-prospects-2015-revision.