Unveiling the efficacy of a bacterial antagonist in the management of tomato wilt disease caused by Ralstonia solanacearum

Citation :- Unveiling the efficacy of a bacterial antagonist in the management of tomato wilt disease caused by Ralstonia solanacearum. Res. Crop. 25: 316-323
BUSHRA SOLANKI AND MOHD SAGHIR KHAN bushrasolanki2395@gmail.com
Address : Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
Submitted Date : 24-02-2024
Accepted Date : 17-04-2024


The long-term application of agrochemicals, including pesticides, in intensive agricultural practices to protect crops from biotic stresses results in the emergence of resistance among phytopathogens and the ineffectiveness of chemical applications. The microbiological strategies, in contrast, minimize the reliance on chemicals and, hence, reduce environmental and human health risks. Bacterial wilt of tomato induced by Ralstonia solanacearum is one of the most destructive diseases worldwide that requires urgent attention to develop a safer and more efficient method to control the phytopathogen. The present work was conducted in the year 2022-2023. In this study, the bacterial wilt was managed by an antagonist bacterium, Pseudomonas fluorescens, exhibiting variable morphological, biochemical, and plant growth-promoting activities. The P. fluorescens inhibited the growth of R. solanacearum in plate assay at different time intervals (0-48 h). The SEM image of R. solanacearum cells cultured with P. fluorescens revealed pores, distortion, and fragmented cell envelope, while the untreated bacterial cells were uniform and smooth. Tomato plants infected with R. solanacearum showed 89% disease incidence compared to uninfected but PGPR-inoculated tomato plants. Application of P. fluorescens reduced disease incidence by 63% compared to R. solanacearum infested plants. Furthermore, plant length enhanced by 21 and 26% significantly following bacterial inoculation after three and four weeks of growth. Conclusively, this study emphasizes the effectiveness of using PGPR as a potent strategy for managing wilt disease in vegetable crops, especially tomato.


Biocontrol bacterial wilt PGPR Pseudomonas fluorescens Ralstonia solanacearum Solanum lycopersicum


Abd El-Rahman, A. and Shaheen, H. A. (2016). Biological control of the brown rot of potato, Ralstonia solanacearum and effect of bacterization with antagonists on the promotion of potato growth. Egyptian J. Biol. Pest Control 26: 733-39.
Abo-Elyousr, K. A. and Hassan, S. A. (2021). Biological control of Ralstonia solanacearum (Smith), the causal pathogen of bacterial wilt disease using Pantoea spp. Egyptian J. Biol. Pest Control 31: 1–8. doi:10.1186/s41938-021-00460-z.
Ahmed, W., Yang, J., Tan, Y., Munir, S., Liu, Q., Zhang, J., Ji, G. and Zhao, Z. (2022). Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21:  doi:10.1016/j.rhisph.2022.100479.
Batista, B. D., Lacava, P. T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Kitajima, E. W., Pereira, J. O. and Azevedo, J. L. (2018). Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol. Res. 206: 33-42. doi:10.1016/j.micres.2017.09.007.
El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. and Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits, and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5:  doi:10.3389/fmicb.2014.00651.
Elsharkawy, M., Derbalah, A., Hamza, A. and El-Shaer, A. (2020). Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 27: 19049-057. doi:10.1007/s11356-018-3806-0.
Kashyap, A. S., Manzar, N., Meshram, S. and Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops - a step toward sustainable agriculture. Front. Microbiol. 14: doi:10.3389/fmicb.2023.1174532.
Mohammed, A. F., Oloyede, A. R. and Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Pl. Protect. 53doi:10. 1080/03235408.2020.1715756.
Onwona-Kwakye, M., Plants-Paris, K., Keita, K., Lee, J., Brink, P. J., Hogarh, J. N. and Darkoh, C. (2020). Pesticides decrease bacterial diversity and abundance of irrigated rice fields. Microorganisms 8: doi:10.3390/microorganisms8030318.
Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A. and Antonius, S. (2023). IAA and ACC deaminase-producing bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 9doi:10.1016/j.heliyon.2023.e16306.
Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q. and Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 192: 103-13doi:10. 1016/j.micres.2016.05.014.
Rekha Jangir, Indu Singh Sankhla and Kailash Agrawal (2018). Characterization, incidence, transmission and biological control of Ralstonia solanacearum associated with soybean [Glycine max (L.) Merrill] in Rajasthan, India. Res. Crop. 19: 472-79.
Rizvi, A., Chandrawal, R., Khan, M. H., Ahmed, B., Umar, S. and Khan, M. S. (2023). Microbiological control of Xanthomonas-induced bacterial leaf streak disease of wheat via phytocompounds and ROS processing enzymes produced under biotic stress. J. Pl. Growth Regulat. 24: 1-23. doi:10.1007/s.00344-023-11119-4.
Shivalingaiah, U. S. and Umesha, S. (2013). Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Can. J. Pl. Protect. 1: 147-53.
Shoaib, M., Hussain, T., Shah, B., Ullah, I., Shah, S.M., Ali, F. and Park, S. H. (2022). Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Pl. Sci. 13: doi:10.3389/fpls.2022.1031748.
Simbo Diakite, Elena Pakina, Meisam Zargar, Ahmed Abdalbare A Dire Aldaibe, Parpura Denis, Lapshin Gregory and Abdullah Behzad (2022). Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Research on Crops 23: 418-36.
Szentes, S., Radu, G. L., Laslo, É., Lányi, S. and Mara, G. (2013). Selection and evaluation of potential biocontrol rhizobacteria from a raised bog environment. Crop Protect. 52: 116-24.  doi:10.1016/J.CROPRO.2013.05.021.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Rev. Microbiol. 18: 607-21. doi:10.1038/s41579-020-0412-1.
Ullah, S., Bano, A., Ullah, A., Shahid, M. A. and Khan, N. (2022). A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere 23: doi:10.1016/j.rhisph.2022.100571.
UNDESA (2015) The world population prospects: Revision.https://www.un.org/en/ development/desa/publications/world-population-prospects-2015-revision.


Global Footprints