Influence of growth stages on the nutritional value of Momordica balsamina leaf powder


Citation :- Influence of growth stages on the nutritional value of Momordica balsamina leaf powder. Res. Crop. 25: 336-342
Address : University of Limpopo, Department of Plant Production, Soil Science and Agricultural Engineering, Private Bag x1106, Sovenga, 0727, Polokwane, South Africa
Submitted Date : 22-02-2024
Accepted Date : 4-05-2024


The nutritive mineral element concentrations of most African leafy vegetables (ALVs) are influenced by the plant’s growth stages. Momordica balsamina is an ALV in the Cucurbitaceae family, rich with nutraceutical and pharmaceutical properties, available in the plant at different growth stages. A greenhouse study was conducted to determine the responses of the nutritional value of M. balsamina leafy vegetable harvested at different growth stages. Six growth stages, namely, vegetative (reference), bud development, flower initiation, fruit set, fruit development and physiological maturity, served as treatments, with 10 replicates and arranged in RCBD. Treatments had highly significant (P ≤ 0.01) effect on the tested nutritional quality, namely, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), iron (Fe) and phosphorus (P). Relative to the reference, K was the highest (1206 mg/L) at flower initiation stage, whereas the highest Ca (127.70 mg/L) and Zn (2.21 mg/L) concentrations occurred at the fruit development stage. At the physiological maturity stage, the highest Mg (25.19 mg/L), P (16.54 mg/L) and Fe (5.49 mg/L) concentrations, were recorded. Noticeably, during early growth stages, P, Fe and Zn were negatively reduced, when compared to K, Ca and Mg, which were increasing at every growth stages. In conclusion, the greatest accumulation of the tested mineral elements was mainly observed as from when the leafy vegetable started setting fruit until physiological maturity stage.


Bitter leaf leaf powder leafy vegetable medicinal plant physiological maturity


Bernier, G., Kinet, J. M. and Sachs, R. M. (2018). The physiology of flowering: transition to reproductive growth. CRC Press, Florida, USA. pp. 1-241. doi:10.1201/ 978135 1075688.
Biondo, P. B. F., Boeing, J. S., Barizão, É. O., Souza, N. E. D., Matsushita, M., Oliveira, C. C. D., Boroski, M. and Visentainer, J. V. (2014). Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: a chemical composition study. Food Sci.Technol. 34: 94-101. doi:10.1590/S0101-20612014005000007.  
Chipurura, B. (2010). Nutritional content, phenolic compounds composition and antioxidant activities of selected indigenous vegetables of Zimbabwe. Master of Philosophy Thesis. University of Zimbabwe, Zimbabwe.
Fasuyi, A. O. (2006). Nutritional potentials of some tropical vegetable leaf meals: chemical characterization and functional properties. Afr. J. Biotechnol. 5: 49-53.
Flyman, M. V. and Afolayan, A. J. (2008). Effect of plant maturity on the mineral content of the leaves of Momordica balsamina L. and Vigna unguiculata subsp. sesquipedalis (L.) Verdc. J. Food Qual. 31: 661-71. doi:10.1111/j.1745-4557.2008.00218.x.
Hans, C. P., Sialy, R. and Bansal, D. D. (2002). Magnesium deficiency and diabetes mellitus. Curr. Sci. 23: 1456-63.
Hassan, L. G. and Umar, K. J. (2006). Nutritional value of Balsam Apple (Momordica balsamina L.) leaves. Pak. J. Nutr. 5: 522-29. doi:10.3923/pjn.2006.522.529.
Jeyaprakasam, A. J. S., Mahendhiran, M. and Palaniyandi, S. A. (2021). Development of protocols for in vitro culture of Momordica cymbalaria. Crop Res. 56: 178-82.
Kirschmann, J. D. (2007). Nutrition Search Inc. Nutrition almanac, 6th Edn. New York, McGraw–Hill Professional. pp. 21-85.
Kopsell, D. E., Kopsell, D. A., Sams, C. E. and Barickman, T. C. (2013). Ratio of calcium to magnesium influences biomass, elemental accumulations, and pigment concentrations in kale. J. Plant Nutr. 36: 215-65. doi:10.1080/01904167.2013.789108.
Makkar, H. P. S. (2000). Quantification of tannins in free foliage. A laboratory manual for the FAO/IAEA co-ordinated research project on use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on Tanniniferous tree foliage. Anim. Feed Sci. Technol137: 138-49.  doi:10.1007/978-94-017-0273-7.
Mamboleo, T. F., Msuya, J. M. and Mwanri, A. W. (2018). Vitamin C, iron and zinc levels of      selected African green leafy vegetables at different stages of maturity. Afr. J. Biotechnol. 17: 567-73. doi:10.5897/AJB2017.16346.
Maseko, I. (2018). Pre-and post-harvest response of selected indigenous leafy vegetables to water stress. Ph.D. Thesis. University of KwaZulu–Natal, South Africa.
 Maseko, I., Ncube, B., Mabhaudhi, T., Tesfay, S., Chimonyo, V. G. P., Araya, H. T., Fessehazion, M. and Du Plooy, C. P. (2019). Nutritional quality of selected African leafy vegetables cultivated under varying water regimes and different harvests. S. Afr. J. Bot. 126: 78-84. doi:10.1016/j.sajb.2019.06.016.
Mensah, J., Okoli, R., Ohaju-Obodo, J. and Eifediyi, K. (2008). Phytochemical, nutritional and medicinal properties of some leafy vegetables consumed by Edo people of Nigeria. Afr. J. Biotechnol. 7: 2304-09.
Onyango, C. M. (2010). Preharvest and postharvest factors affecting yield and nutrient contents of vegetable amaranth (Var. Amaranthus hypochondriacus). Ph.D. Thesis Wageningen University and Research, Netherlands.
Pinto, E., Almeida, A. A., Aguiar, A. A. and Ferreira, I. M. (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compost. Anal. 37: 38-43. doi:10.1016/J.JFCA.2014.06.018.
Rout, G. R. and Sahoo, S. (2015). Role of iron in plant growth and metabolism. Rev. Agric. Sci. 3: 1-24. doi:10.7831/ras.3.1.
Shah, S. S. A., Hussain, M. I., Aslam, M. K. and Rivera, G. (2014). Natural products: Pharmacological importance of family Cucurbitaceae: A brief review. Mini–  Rev. Med. Chem. 14: 694-705. doi:10.2174/1389557514666140820113055.
Thakur, G. S., Bag, M., Sanodiya, B. S., Bhadauriya, P., Debnath, M., Prasad, G. B. K. S. and Bisen, P. S. (2009). Momordica balsamina: a medicinal and nutraceuticals plant for health care management. Curr. Pharm. Biotechnol.10: 667-82. doi:10.2174/138920109789542066.
Trumbo, P., Yates, A. A., Schlicker, S. and Poos, M. (2001). Dietary reference intakes. J. Ame. Diet. Assoc. 101: doi:10.1016/S0002-8223(01)00078-5.
Ülger, T. G., Songur, A. N., Çırak, O. and Çakıroğlu, F. P. (2018). Role of vegetables in human nutrition and disease prevention. In: Vegetables: Importance of quality vegetables to human health (Eds. Asaduzzaman, M. and Asao, T.). Books on Demand, Norderstedt, Germany. pp. 7-32. doi:10.5772/intechopen.77038.
Valentina Gins, Yury Fotev, Alexey Baikov, Yana Mizrukhina, Anvar Gadzhikurbanov, Yaser Rebouh (2020). Survey of antioxidants and photosynthetic pigments in the newly introduced crops of Russia: Benincasa hispida, Vigna unguiculata, Cucumis metuliferus and Momordica charantia. Res. Crop. 21: 339-43.
Waterland, N. L., Moon, Y., Tou, J. C., Kim, M. J., Pena–Yewtukhiw, E. M. and Park, S. (2017). Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. HortSci. 52: 566-71. doi:10.21273/HORTSCI11499-16.
Wang, L., Zheng, J., You, J., Li, J., Qian, C., Leng, S., Yang, G. and Zuo, Q. (2021). Effects of phosphorus supply on the leaf photosynthesis, and biomass and phosphorus  accumulation and partitioning of canola (Brassica napus L.) in saline environment. Agronomy 11: 1918-27.  doi:10.3390/agronomy11101918.
White, P. J. and Broadley, M. R. (2003). Calcium in plants. Ann. Bot. 92: 487-511. doi:10.1093/aob/mcg164.
Xiao, Z., Codling, E. E., Luo, Y., Nou, X., Lester, G. E. and Wang, Q. (2016). Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compost. Anal. 49: 87-93.  doi:10.1016/J.JFCA.2016.04.006.

Global Footprints