Enhancing the efficacy of biochar derived from crop residues on rice (Oryza sativa L.) dry matter, yield accumulation and soil organic carbon in Central Vietnam


Citation :- Enhancing the efficacy of biochar derived from crop residues on rice (Oryza sativa L.) dry matter, yield accumulation and soil organic carbon in Central Vietnam. Res. Crop. 25: 216-221
T. D. H. TRUONG, T. D. TRAN, Q. C. NGUYEN, T. T. D. NGUYEN AND T. T. H. HOANG htthoa@hueuni.edu.vn
Address : University of Agriculture and Forestry, Hue University, Hue City, Vietnam
Submitted Date : 14-02-2024
Accepted Date : 15-04-2024


Biochar from crop residues plays an important role in reclamation of degraded rice soil due to imbalance fertilizer application and soil carbon sequestration. The objective of this study aimed to evaluate the best type and rate of biochar application for rice dry matter and soil organic carbon improvement. Therefore, pot experiments were carried out in two seasons of spring and summer 2023 at the University of Agriculture and Forestry, Hue University. Twelve treatments including 2 types of biochar (rice husk and peanut shell) and 6 application rates (0, 1, 2, 3, 4, 5%) were used and arranged in a randomized block design with three replications. Research results showed that the shoot dry matter was higher 9.5 – 27.0% (spring season) and 19.1 – 26.9% (summer season) at a rate of 5% application in both types of biochar than control. Rice husk biochar application had higher shoot dry matter than peanut shell biochar application in the same application rate from 0.30 – 0.46 g/plant in both seasons. Similarly, organic carbon was found the highest content (2.15 - 2.21%) when the application of biochar from crop residues at a rate of 5%. Biochar from crop residues is considered as a good amendment for increasing crop dry matter and soil organic carbon.


Biochar dry matter accumulation rice crop soil quality


Agusalim Masulili, Sutikarini, Rini Suryani, Ida Ayu Suci, Ismail Astar, Hardi Dominikus Bancin and Paiman (2022). Role of biochar amendments in improving the properties of acid sulphate soil. Res. Crop. 23: 787-794.
Ahmad, M., Wang, X., Hilger, T. H., Luqman, M., Nazli, F., Hussain, A., Zahir, Z. A., Latif, M., Saeed, Q. and Malik, H. A. J. A. (2020). Evaluating biochar-microbe synergies for improved growth, yield of maize, and post-harvest soil characteristics in a semi-arid climate. Agronomy 10: doi:10.3390/agronomy10071055.
Ali, I., Ullah, S., He, L., Zhao, Q., Iqbal, A., Wei, S., Shah, T., Ali, N., Bo, Y., Adnan, M., Amanullah. and Jiang, L. (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. Peer J. 8: doi:10.7717/peerj.10311.
Bebeley, H. A., Mabey, P.  T. and Norman, P. E. (2021). Effects of biochar, plant density and spacing on growth and yield of rice in a tropical inland valley swamp. Int. J. Appl. Agric. Sci. 7: 77-83. doi:10.11648/j.ijaas.20210702.11.
Cybulak, M., Sokołowska, Z. and Boguta, P. J. A. (2019). Impact of biochar on physicochemical properties of Haplic Luvisol soil under different land use: A plot experiment. Agronomy 9: doi:10.3390/agronomy9090531.
FAO (2023). Statistical Yearbook: World Food and Agriculture. FAO, Rome, Italy. pp. 21.
Gu, W., Wang, Y., Feng, Z., Wu, D., Zhang, H., Yuan, H., Sun, Y., Xiu, L., Chen, W. and Zhang, W. (2022). Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and Japonica rice production system. Front. Environ. Sci. 10:  doi.org/ 10.3389/fenvs.2022.902752.
Guo, H., Zhang, Q., Chen, Y. and Lu, H. (2023). Effects of biochar on plant growth and hydro-chemical properties of recycled concrete aggregate. Sci. Total Environ. 882doi:10.1016/ j.scitotenv.2023.163557.
He, P., Gleason, S. M., Wright, I. J., Weng, E., Liu, H., Zhu, S., Lu, M., Luo, Q., Li, R., Wu, G., Yan, E., Song, Y., Mi, X., Hao, G., Reich, P. B., Wang, Y., Ellsworth, D. S. and Ye, Q. (2020). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26: 1833-41. doi:10.1111/gcb.14929.
Huang, M., Fan, L., Chen, J., Jiang, L. and Zou, Sr. Y. J. (2018). Continuous applications of biochar to rice: effects on nitrogen uptake and utilization. Sci. Rep. 8: doi:10.1038/s41598-018-29877-7.
Islam, S. Md. J., Mannan, M. A., Khaliq, Q. A. and Rahman, M. M. (2018). Growth and yield response of maize to rice husk biochar. Aust. J. Crop Sci. 12: 1813-19. doi:10.21475/ajcs.18.12.12.p944.
Jaswal, A., Mehta, C. M. and Singh, A. (2022). Probing the impact of biochar combined with organic and inorganic amendments on soil carbon pools of rice (Oryza sativa) - wheat (Triticum aestivum) cropping system. Res. Crop. 23: 508-15. doi:10.31830/ 24541761.2022.roc-861.
Khan, I., Chen, T., Farooq, M., Luan, C., Wu, Q., Wanning, D., Xu, S. and Li-Xue, W. J. A. J. (2021). The residual impact of straw mulch and biochar amendments on soil physiochemical properties and yield of maize under rainfed system. Agron. J. 113: 1102-20.  doi:org/10.1002/agj2.20540.
Khan, I., Luan, C., Qi, W., Wang, X., Yu, B., Rehman, A., Khan, A. A., Khan, J. and Li-Xue, W. J. J. (2022). The residual impact of straw mulch and biochar amendments on grain quality and amino acid contents of rainfed maize crop. J. Plant Nutr. 2022: 1-13. doi:10. 1080/01904167.2022.2056483.
 Liu, X., Zhou, J., Chi, Z., Zheng, J., Li, L., Zhang, X., Zheng, J., Cheng, K., Bian, R. and Pan, G. (2019). Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. Catena 179: 20-28. doi: 10.1002/agj2.20540.
Masina Sairam, Sagar Maitra, Chabolu Venkata Raghava, Tadiboina Gopala Krishna, Dinkar J. Gaikwad, Upasana Sahoo and Sumit Ray (2023). Efficient crop residue management under conservation agriculture for improving soil quality: A review. Farm. Manage. 8: 59-71.
Masulili, A., Sutikarini., Suryani, R., Suci, I. A., Astar, I., Bancin, H. D. and Paiman (2022). Role of biochar amendments in improving the properties of acid sulphate soil. Res. Crop. 23: 787-94.  doi:10.31830/2348-7542.2022.
Novair, S. B., Cheraghi, M., Faramarzi, F., Lajayer, B. A., Senapathi, V., Astatkie, T. and Price, G. W. (2023). Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicol. Environ. Saf. 263: doi:10.1016 /j.ecoenv.2023.115228.
Page, A. L., Miller, R. H. and Keeney, D. R. (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. In Soil Science Society of America, Vol. 1159.
Rehman, A., Arif, M. S., Tufail, M. A., Shahzad, S. M., Farooq, T. H., Ahmed, W., Mehmood, T., Farooq, M. R., Javed, Z. and Shakoor, A. (2021). Biochar potential to relegate metal toxicity effects is more soil driven than plant system: A global meta-analysis. J. Clean. Production 316: doi:10.1016/j.clepro.2021.128276.
Sathe, P. S., Adivarekar, R. V. and Pandit, A. B. (2020). Study on valorization of coconut (Cocos nucifera) husk into biochar for soil amendment and its effect on sorghum (Sorghum bicolor). Crop Res. 55: 215-29.
Shakoor, A., Arif, M. S., Shahzad, S. M., Farooq, T. H., Ashraf, F., Altaf, M. M., Ahmed, W., Tufail, M. A. and Ashraf, M. (2021). Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? A global meta-analysis. Environ. Res. 202: doi:10.1016/j.envres.2021.111789.
Zhang, M., Riaz, M., Zhang, L., El-desouki, Z. and Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: more effective on acidic soils.  Front. Microbiol. 10doi:10.3389/ fmicb.2019.01321.

Global Footprints