Loading...

Optimizing oil palm farming: Soil quality, fertilization and agro-environmental performance


Citation :- Optimizing oil palm farming: Soil quality, fertilization and agro-environmental performance. Res. Crop. 25: 286-291
CUCU SUHERMAN, JAJANG SUPRIATNA, ANNE NURAINI AND SYARIFUL MUBAROK cucu.suherman@unpad.ac.id
Address : Department of Agronomy, Faculty of Agriculture, Padjadjaran University, Bandung 45363, Indonesia
Submitted Date : 9-02-2024
Accepted Date : 22-04-2024

Abstract

The essential role of fertilization in the management of oil palm plantations cannot be overstated, with the understanding that effective strategies must be fine-tuned to accommodate the diversity of soil types present. The nuanced response of oil palm to fertilization under different soil conditions underscores the critical nature of this research. This study investigates the relationship between oil palm farming practices and agro-environmental performance of plantations. This research aims to understand the complex mechanisms influencing plantation productivity. Five agronomic field experiments were carried out on various soil types (Podzol, Inceptisol, Peat) during 2022. These experiments involved various types of soil and used different plant materials in a total land area of 33 hectares. The results of the peat soil trials revealed a positive effect of RP fertilizer on leaf phosphorus (P) content and a visible gradient in potassium (K) content with different doses of KCl. Average plantation yields peaked in 2022, showing the best yields ever recorded. On the contrary, experiments in podzolic soils showed that oil palm responded better to organic fertilizers than to mineral fertilizers in podzolic soils. The inceptisol soil revealed a significant increase in leaf potassium (K) content with KCl dose, confirming the positive effect of fresh oil palm empty fruit bunches (EFB) on potassium levels. In particular, EFB acts as a good K fertilizer, positively influencing the K content but negatively affecting the calcium content (Ca) due to K/Ca antagonism. These findings emphasize the need for diversified agricultural strategies to optimize oil palm cultivation, increase productivity, and reduce dependence on external input.

 

Keywords

Nutrition oil palm plantation management plant-soil interactions productivity

References

Ariyanti, M., Ratningsih, N., Suherman, C., Rosniawaty, S. and Asbur, Y. (2021). Effects of oil palm midrib compost and humic acid on the growth and water use of immature oil palm (Elaeis guineensis). Res. Crop. 22: 74-86.
Austin, K. G., Mosnier, A., Pirker, J., McCallum, I., Fritz, S. and Kasibhatla, P. S. (2017). Shifting patterns of palm oil driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69: 41–48. doi:10.1016/j.landusepol. 2017.08.036.
Chebotarev, N. T. and Brovaova, O. V. (2021). The effect of mineral fertilizers and liming on the properties of sod-podzolic soils and the productivity of legume-grass mixture in the conditions of the Komi Republic. Agric. Sci. Euro-North-East 22: 385–92. doi.org/ 10.30766/2072-9081.2021.22.3.385-392.
de Oliveira Mendes, G., Moreira de Freitas, A. L., Liparini Pereira, O., Ribeiro da Silva, I., Bojkov Vassilev, N. and Dutra Costa, M. (2014). Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Annals Microbiol. 64: 239-49. doi:10.1007/s13213-013-0656-3.
Geng, J., Yang, X., Lei, S., Zhang, Q., Li, H., Lang, Y., Huo, X. and Liu, Q. (2023). Combining controlled-release urea with potassium chloride to reduce soil N/K leaching and promote growth of Italian ryegrass. Sci. Rep. 13:  doi:10.1038/s41598-023-27620-5.
Hunter, P., Teakle, G. and Bending, G. (2014). Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Front.Plant Sci. 5: doi:10.3389/fpls.2014.00027.
Meijaard, E., Brooks, T. M., Carlson, K. M., Slade, E. M., Garcia-Ulloa, J., Gaveau, D. L. A., Lee, J. S. H., Santika, T., Juffe-Bignoli, D., Struebig, M. J., Wich, S. A., Ancrenaz, M., Koh, L. P., Zamira, N., Abrams, J. F., Prins, H. H. T., Sendashonga, C. N., Murdiyarso, D., Furumo, P. R. and Sheil, D. (2020). The environmental impacts of palm oil in context. Nature Plants 6: 1418-26. doi:10.1038/s41477-020-00813-w.
Mettauer, R., Baron, V., Turinah, Demitria, P., Smit, H., Alamsyah, Z., Penot, E., Bessou, C., Chambon, B., Ollivier, J. and Thoumazeau, A. (2021). Investigating the links between management practices and economic performances of smallholders' oil palm plots. A case study in Jambi province, Indonesia. Agric. Syst. 194: doi:10.1016/j.agsy.2021.103274.
Pardon, L., Huth, N. I., Nelson, P. N., Banabas, M., Gabrielle, B. and Bessou, C. (2017). Yield and nitrogen losses in oil palm plantations: Main drivers and management trade-offs determined using simulation. Field Crops Res. 210: 20-32. doi:10.1016/j.fcr.2017.05.016.
Parsons, S., Raikova, S. and Chuck, C. J. (2020). The viability and desirability of replacing palm oil. Nat. Sustain. 3: 412-18. doi:10.1038/s41893-020-0487-8.
Rüegg, J., Quezada, J. C., Santonja, M., Ghazoul, J., Kuzyakov, Y., Buttler, A. and Guillaume, T. (2019). Drivers of soil carbon stabilization in oil palm plantations. Land Degrad. Dev. 30: 1904-15. doi:10.1002/ldr.3380.
Song, G., Hayes, M. H. B. and Novotny, E. H. (2021). A two-year incubation study of transformations of crop residues into soil organic matter (SOM) and a procedure for the sequential isolation and the fractionation of components of SOM. Sci. Total Environ. 763: doi:10.1016/j.scitotenv.2020.143034.
Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R. and Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616–17: 255–68. doi:10.1016/j.scitotenv.2017.10.309.
Widayat, D., Kurniadie, D. and Permatasari, I. N. P. (2024). The effectiveness of isopropylamine glyphosate 486 g/L + metsulfuron methyl 1 g/L herbicidal combination in oil palm (Elaeis guineensis). Res. Crop. 25: 110-16.
 
 

Global Footprints