Identification of molecular characters of tomato seedlings (Solanum lycopersicum) from Limpopo Province, South Africa, using 28S rDNA


Citation :- Identification of molecular characters of tomato seedlings (Solanum lycopersicum) from Limpopo Province, South Africa, using 28S rDNA. Res. Crop. 25: 312-315
GAVIN GELDENHUYS gavin.geldenhuys@ul.ac.za
Address : Aquaculture Research Unit, School of Agricultural and Environmental Sciences, University of Limpopo (Turfloop Campus), Private Bag X1106, Sovenga, 0727, South Africa
Submitted Date : 28-09-2023
Accepted Date : 8-04-2024


 Farming with tomatoes (Solanum lycopersicum) in South Africa can be a highly profitable operation, provided the farmer starts the crop with the right variety of quality seedlings, suited for the specific growth area. Therefore, it is necessary to study tomato seedlings on the molecular level. This study was conducted to isolate and identify S. lycopersicum in Limpopo Province, South Africa. Therefore, this molecular study was conducted in 2022 at Limpopo University. To identify S. lycopersicum 28S rDNA marker was used. The DNA was extracted using the Chelex method. The tomato was identified as S. lycopersicum. The Nblast analysis showed South African S. lycopersicum has a 99.8% similarity with a population from Germany (OU640345) and a 99.7% similarity with a population from Sweden (OK073662). Phylogenetic analysis using maximum likelihood placed this species with those molecularly identified as S. lycopersicum in the same clade with highly supported (83) bootstrap values. In conclusion, this species is identified using 28S rDNA properly. However, other DNA markers are recommended to understand Solanum spp. phylogeny better.


Solanum lycopersicum molecular markers rDNA


Aflitos, S., Schijlen, E., De Jong, H., et al. (2014). Exploring genetic variation in the tomato (Solanum lycopersicon) clade by whole-genome sequencing. Plant J. 80: 136-48. doi:10.1111/tpj.12616.
Aminisarteshnizi, M. (2022). Molecular characters of parasitic nematode (Hemicycliophora typica) associated with eggplant (Solanum melongena) using 28S rDNA from regions of South Africa. Res. Crop. 23: 449-52.  doi:10.31830/2348-7542.2022.060.
Ansari, A., Sikarwar, P., Lade, S., Yadav, H. and Ranade, S. H. (2016). Genetic diversity clusters in germplasm of Cluster Bean (Cyamopsis tetragonoloba L., Taub), an important food and an industrial legume crop. J. Agric. Sci. Technol. 18: 1407-18.  
Ezekiel, C. N., Nwangburuka, C. C., Ajibade, O. A. and Odebode, A. C. (2011). Genetic diversity in 14 tomato (Lycopersicon esculentum Mill.) varieties in Nigerian markets by RAPD-PCR technique. Afr. J. Biotechnol. 10: 4961–67.
Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007: doi:10.1155/2007/64358.
Gerszberg, A., Hnatuszko-Konka, K., Kowalczyk, T., et al. (2015). Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tiss. Organ Cult. 120: 881-902. doi:10.1007/s11240-014-0664-4.
Herison, C., Sutjahjo, S. H., Sulastrini, I., Rustikawati, R. and Marwiyah, S. (2018). Genetic diversity analysis in 27 tomato accessions using morphological and molecular markers. Agrivita J. Agric. Sci. 40: 36-44. doi:10.17503/agrivita.v40i1.726.
Liu, L., Wang, C. L., Peng Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-49.  doi:10.1093/molbev/msy096.
Lucatti, A. F., Van, Heusden. A. W., De Vos, R. C. H., Visser, R. G. F. and Vosman, B. (2013). Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolu. Biolo. 13: doi:10.1186/1471-2148-13-175.
Makhadmeh, I., Albalasmeh, A. A., Ali, M., Thabet, S. G., Darabseh, W. A., Jaradat, S. and Alqudah, A. M. (2022). Molecular characterization of tomato (Solanum lycopersicum L.) Accessions under drought stress. Horticulturae 8: doi:10.3390horticulturae 8070600.
Mazzucato, A., Papa, R., Bitocchi, E., et al. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor. Appl. Genet. 116: 657–69.  doi:10.1007/s00122-007-0699-6.
Oduro, L., Allotey, J. A., Akyereko, Y. G., Wireko-Manu, F. D. and Akowuah, J. O.  (2023).
A comparative study on phytochemical, nutritional and microbial load of fresh and spoiled tomatoes (Lycopersicon esculentum L.). Res. Crop. 24: 727-36.
Rothan, C., Diouf, I. and Causse, M. (2019). Trait discovery and editing in tomato. Plant J. 97: 73-90.  doi:10.1111/tpj.14152.
Shokoohi, E. (2023a). Impact of agricultural land use on nematode diversity and soil quality in Dalmada, South Africa. Horticulturae 9: doi:10.3390/horticulturae9070749
Shokoohi, E. (2023b). First observation on morphological and molecular characters of Bitylenchus ventrosignatus (Tobar Jiménez, 1969) Siddiqi, 1986 isolated from tomato in Dalmada, South Africa. Biologia 78: 3599-607. doi:10.1007/s11756-023-01494-4.
Sim, S. C., Robbins, M., Deynze, A., et al. (2011). Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106: 927-35. doi:10.1038/hdy.2010.139.
The Tomato Genome Consortium (2012).  The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-41. doi:10.1038/nature11119.

Global Footprints