Seed priming by cold scarification and Moringa-based bio-stimulant on the germination of Artemisia afra

Citation :- Seed priming by cold scarification and Moringa-based bio-stimulant on the germination of Artemisia afra. Res. Crop. 25: 172-180
Address : University of Limpopo, Department of Plant Production, Soil Science and Agricultural Engineering, Green Biotechnologies Research Centre of Excellence, Private Bag X1106, Sovenga, 0727, South Africa
Submitted Date : 3-10-2023
Accepted Date : 5-01-2024


Artemisia afra is a frequently utilized medicinal plant in diverse cultural traditions for the management of various health conditions. Despite its natural habitat, limited efforts have been dedicated to its systematic cultivation, resulting in a paucity of documented information concerning its seed biology and germination characteristics. This study aimed to determine the effect of different temperatures, scarification, light conditions and priming with biostimulant on the seed germination of Artemisia afra. The seeds were exposed to different scarification methods including rubbing (sandpaper), hot and cold-water soaking, acid (H2SO4) and fermentation (EM) and compared with untreated seeds (control). Photoperiods included constant light, alternating light (16/8 hours) and continuous darkness at 15 °C, 25 °C and 35 °C. Results revealed that 25 °C temperature significantly improved germination while no germination was obtained at 15°C and 35°C. Hot and cold-water scarification resulted in improved germination. There was no germination observed for fermented seeds in all the experiments. In photoperiod, the highest germination percentage of 70 % was observed under alternating light. Using Moringa based biostimulant under alternating light conditions at 25 °C resulted in improved MGT. The information generated from this study will contribute to bridging the scientific gap by generating information on optimum requirements for propagating A. afra through seeds.


Bio-stimulant germination time photoperiod seed priming scarification


Bewley, J. D. and Black, M. (2013). Physiology and Biochemistry of Seeds in Relation to Germination, Viability, Dormancy and Environmental Control 3rd ed. Springer-Verlag, Berlin. Heidelberg, New York, USA. doi:10.1007/978-3-642-68643-6.
Dayamba, S. D., Sawadogo, L., Tigabu, M., Savadogo, P., Zida, D., Tiveau, D. and Oden, P. C. (2010). Effects of aqueous smoke solutions and heat on seed
germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso. Flora-Morphol: Distrib. Funct. Ecol. Plants 205: 319-25. doi:10.1016/j.flora.2009.12.017.
Ellis, R. H. and Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9: 373-409.
Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A. and Rehman, H. (2008).  Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Agron. Crop Sci. 194: 161-68. doi:10.1111/j.1439-037X.2008.00300.x.
Finch-Savage, B. (2013). Seeds: Physiology of development, germination and dormancy -J. D. Bewley, K. J. Bradford, H. W. M. Hilhorst and H. Nonogaki (eds.), Springer, New York–Heidelberg–Dordrecht–London. pp. 392.
Germishuizen, G., and Meyer, N. L. (2003). Plants of southern Africa: An annotated checklist. Strelitzia 14. National Botanical Institute, Pretoria, South Africa.
Hartmann, H. T., Kester, D. E., Davies, F. T. and Geneve, R. I. (2010). Plant Propagation: Principles and Practices. Prentice Hall: New Jersey, U.S.A.
Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean. Phaseolus vulgaris L. plants. Ecotoxicol. Environ. Saf. 100: 69-75. doi:10.1016/j.ecoenv.2013.11.022.
Huo, H., Dahal, P., Kunusoth, K., McCallum, C. and Bradford, K.  (2013). Expression of 9-cis-epoxycarotenoid dioxygenase4 is essential for thermos-inhibition of lettuce seed germination but not for seed development or stress tolerance. Plant Cell 25: 884-900. doi:10.1105/tpc.112.108902.
Hussain, S., Khan, F., Hussain, S. and Nie, L. (2016). Physiological and biochemical mechanisms of seed priming induced chilling tolerance in rice cultivars Front. Plant Sci. 7: 1-12.  doi:10.3389/fpls.2016.00116.
ISTA (1999). Biochemical test for viability. Seed Sci. Technol. (Suppl.) 27: 25-30.
Jabarzare, A., Bassiri, M. and Vahabi, M. R. (2011). Effects of light and drought stress on germination of Artemisia sieberi Besser.  Biotech. 10:11903-910.
James, P. B., Wardle, J., Steel, A. and Adams, J. (2018). Traditional, complementary and alternative medicine use in Sub-Saharan Africa: A systematic review. BMJ Global Health 3: doi:10.1136/bmjgh-2018-000895.
Kimball, S., Campbell, D. R and Lessin, C. (2008). Differential performance reciprocal hybrids in multiple environments. Ecology 96: 1306-318.                        doi:10.1111/j.1365-2745.2008.01432.x.
Kimura, E. and Islam, M. A.  (2012). Seed scarification methods and their use in forage legume Seed Sci. 5: 38-50. doi:10.3923/rjss.2012.38.50.
McGeocha, L., Gordonb, I. and Schmitta, J. (2008). Impacts of land use, anthropogenic disturbance, and harvesting on African medicinal plants. Biol. Conserv. 141: 2218-29. doi:10.1016/j.biocon.2008.06.021.
Moyo, M., Amoo, S. O. and Van Staden, J. (2022). Aqueous smoke and karrikin influence seed germination of Amaranthus dubius in varying light, temperature and osmotic stress conditions. South Afr. J. Bot. 148: 704-09. doi:10.1016/j.sajb.2022.05.024.
Okello, D., Komakech, R. and Gang, R. (2022). Influence of various temperatures, seed priming treatments and durations on germination and growth of the medicinal plant Aspilia Africana. Sci. Rep12: doi:10.1038/s41598-022-18236-2.
Patel, D. R., Chaudhari, P. P. and Patel, J. M. (2018). Yield and nutrient uptake of summer cowpea (Vigna unguiculata L.) as influenced by seed priming with different plant geometry and nutrient management. Crop Res. 53: 141-46. doi:10.31830/24541761.2018.0001.8.
Ramin, A. A. (1997). The influence of temperature on germination, Seed Sci. Tech. 25: 419-26.
Singh, J., Aulakh, G. S. and Singh, S. (2023a). Effect of seed priming on growth and yield of late sown wheat (Triticum aestivum) in central plain region of Punjab. Res. Crop. 24: 1-7. doi:10.31830/2348-7542.2023.roc-880.
Singh, R. D., Hussainy, S. A. H., Geetha, R. and Saliha, B. B. (2023b). Optimizing seed metering through drum seeder slot modification in conjugation with seed priming in wet seeded rice (Oryza sativa L.). Res. Crop. 24: 47-53.  doi:10.31830/2348-7542.2023.ROC-11159. 
Siquera, J. O., Safir, G. M. and Nair, M. G. (1991). Stimulation of vesicular-abuscular mycorrhiza formation and growth of white clover by flavonoids compounds. New Phytol. 118: 87-93. doi:10.1111/j.1469-8137.               
 Šoch, J., Šonka, J. and Ponert, J. (2023). Acid scarification as a potent treatment for an in vitro germination of mature endozoochorous Vanilla planifolia seeds. Bot. Stud. 64: doi:10.1186/s40529-023-00374-z.
Taylor, J., Rabe, T., McGaw, L, Jager, A. and Van Staden, J. (2001). Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 34: 23-37. doi:10.1023/A:1013310809275.
Tjitrosoepomo, G. (1999). Plant Morphology, Gadjah Mada University Press, Indonesia.
Tolyat, M. A., Afshari, R. T., Jahansoz, M. R., Nadjafi, F. and Naghdibadi, H. A. (2014). Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. daenensis. Seed Sci. Tech. 42: 28-35. doi:10.15258/sst.2014.42.1.03.
Van Wyk, A. S. and Prinsloo, G. (2018). Medical plant harvesting, sustainability and cultivation in South Africa. Biol. Conserv. 227: 335-42. doi:10.1016/j.biocon.2018.09.018.
Van Wyk, B. E. (2011). The potential of South African plants in the development of new food and beverage products. South Afr. J. Bot. 77: 857-86. doi:10.1016/j.sajb.2011.08.003.
Washitani, I. and Masuda, M. A. (1990). Comparative study of the germination characteristics of seeds from a moist tall grassland community. Funct. Ecol. 4: doi:10.2307/2389450.
Yao, K. B., Koffi, K. K., Sawadogo, M., Baudoin, J. and Zoro, B. I. A. (2013). Effects of seed fermentation method on seed germination and vigor in the oleaginous gourd Lagenaria siceraria (Molina) Standl. Biotech. 12: 6723-729.

Global Footprints