Loading...

Impact of terminal heat stress on performance of Nepalese wheat (Triticum aestivum L.) genotypes 


Citation :- Impact of terminal heat stress on performance of Nepalese wheat (Triticum aestivum L.) genotypes. Res. Crop. 25: 1-11
MUKTI RAM POUDEL, HEMA KUMARI POUDEL AND RADHAKRISHNA BHANDARI muktipoudel8@gmail.com
Address : Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Paklihawa Campus, Nepal
Submitted Date : 14-01-2024
Accepted Date : 8-02-2024

Abstract

Heat stress has been a major abiotic stress that has been a key factor for poor production and the productivity of wheat. To understand the impact of heat stress and to evaluate the performance and stability of elite wheat genotypes under irrigated and heat stress environment, a field experiment was conducted under Alpha lattice design at the Institute of Agriculture and Animal Science, Bhairahawa, Rupandehi, Nepal from 2019-2023 comprising 20 elite wheat genotypes collected from Nepal Agriculture Research Council. The combined analysis of variance showed, heat stress had the significant impact on all the traits evaluated with a 29% yield reduction under heat stress condition as compared to irrigated. NL 1368 (21.5%) and NL 1386 (41.4%) had the least and highest yield reduction under heat stress environment as compared to irrigated. BL 4919 was the highest yielding wheat genotype under both irrigated (4287.9 kg/ha) and heat stress environment (2905.4 kg/ha).  WWW model revealed, NL 1387 was the most stable wheat genotypes while BL 4919 and NL 1350 were the most adaptable genotypes under irrigated and heat stress environment. Hence, these selected adaptive and stable genotypes should be promoted in the wheat improvement program as a parent material for heat stress breeding.

Keywords

Adaptability climate resilient breeding heat stress stability wheat 


References

Aktaş, H. (2016). Tracing highly adapted stable yielding bread wheat (Triticum aestivum L.) genotypes for greatly variable south-eastern Turkey. Appl. Ecol. Environ. Res. 14: 159-76. doi:10.15666/aeer/1404_159176.
Asseng, S., Ewert, F., Martre, P., Zhao, Z. and Zhu, Y. (2014). Rising temperatures reduce global wheat production. Nat. Clim. Chang. pp. 143-47. doi:10.1038/nclimate2470.
Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M. and Panth, P. (2021). Effect of drought & irrigated environmental condition on yield & yield attributing characteristic of bread wheat-A review. Artic. J. Sci. Food Agric. 2: 59–62. doi:10.26480/rfna.02.2021.59.62.
Bhandari, R. K., Nyaupane, S. and Poudel, M. R. (2023). Expression and association of quantitative traits of wheat (Triticum aestivum L .) genotypes under different wheat growing environments. Cogent Food Agric. 9: 1-21. doi:10.1080/23311932.2023.2288394.
Djanaguiraman, M., Narayanan, S., Erdayani, E. and Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20: 1-12. doi:10.1186/s12870-020-02479-0.
Dwivedi, S. K., Basu, S., Kumar, Santosh, Kumar, G., Prakash, V., Kumar, Sanjeev, Mishra, J. S., Bhatt, B. P., Malviya, N., Singh, G. P. and Arora, A. (2017). Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains. Field Crops Res. 206: 106-14. doi:10.1016/j.fcr.2017.03.006.
FAOSTAT (2022). FAOSTAT [WWW Document]. URL http://www.fao.org/faostat/en/#data/QC (accessed 3.23.21). 
Gupta, S., Yadav, B., Timalsina, B., Ganesh, G. C., Bhuj, N., Roka, P. and Bhandari, R. (2022). Reviews In Food and Agriculture ( RFNA ) physiological, morphological & biochemical response of wheat (Triticum aestivum) against heat & drought stress and the tolerance mechanism - A review 3: 43-47. doi:10.26480/rfna.01.2022.43.47.
Hasan, M. J., Kulsum, M. U., Sarker, U., Matin, M. Q. I., Shahin, N. H., Kabir, M. S., Ercisli, S. and Marc, R. A. (2022). Assessment of GGE, AMMI, regression, and its deviation model to identify stable rice hybrids in Bangladesh. Plants 11: doi:10.3390/plants11182336.
IPCC (2021). Climate Change 2021: The physical science basis - Summary for the policymakers (Working Group I), Climate change 2021: The Physical Science Basis.
Kosina, P., Reynolds, M., Dixon, J. and Joshi, A. (2007). Stakeholder perception of wheat production constraints, capacity building needs, and research partnerships in developing countries. Euphytica 157: 475-83. doi:10.1007/s10681-007-9529-9.
Meisam Zargar, Nazih Rebouh, Elena Pakina, Anvar Gadzhikurbanov, Marina Lyashko and Bashir Ortskhanov (2017). Impact of climate change on cereal production in the highlands of Eastern Algeria. Res. on Crops 18: 575-82
MOALD (2022). Nepal’s Ministry of Agriculture and Livestock Development - CIMMYT [WWW Document].
MOALD (2020). Statistical Information in Nepalese Agriculture. Minist. Agric. Livest. pp. 290.
Modarresi, M., Mohammadi, V., Zali, A. and Mardi, M. (2010). Response of wheat yield and yield related traits to high temperature. Cereal Res. Commun. 38: 23–31. doi:10.1556/CRC.38.2010.1.3.
Mohammadi, R., Armion, M., Zadhasan, E., Ahmadi, M. M. and Amri, A. (2018). The use of ammi model for interpreting genotype × environment interaction in durum wheat. Exp. Agric. 54: 670-83. doi:10.1017/S0014479717000308.
Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K. and Mashilo, J. (2019). Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon 5: doi:10.1016/j. heliyon.2019.e01448.
Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J.M., Iván Ortiz-Monasterio, J. and Reynolds, M. (2008). Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 126: 46-58.  doi:10.1016/J.AGEE.2008.01.019.
Oyewole, C. I. (2016). The wheat crop. Report number: 01, Affiliation: Kogi State University, Anyigab, Nigeria. doi:10.13140/RG.2.2.13776.92164.
Pandey, D., Pant, K. R. , Bastola, B. R., Giri, R., Bohara, S., Shrestha, S., Hamal, G. B. and Shrestha, J. (2021). Evaluation of bread wheat genotypes under rain-fed conditions in Terai districts of Nepal. J. Agric. Nat. Resour. 4: 303-15. doi:10.3126/janr.v4i2.33946.
Paudel, B., Zhang, Y., Yan, J., Rai, R., Li, L., Wu, X., Chapagain, P. S. and Khanal, N. R. (2020). Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies. Clim. Change 158: 485-502. doi.org/ 10.1007/s10584-019-02607-2.
Poudel, M. R. and Poudel, H. K. (2016). Genetic variability, heritability and genetic advance of yield attributing traits in winter maize. Int. J. Grad. Res. Rev1: 9-12.
Poudel, M. R., Neupane, M. P., Panthi, B., Bhandari, R., Nyaupane, S., Dhakal, A. and Paudel, H. (2023a). Identification of drought tolerant wheat (Triticum aestivum) genotypes using stress tolerance indices in the western terai region of Nepal. Res. Crop. 24: 652-59.  
Poudel, M. R., Neupane, M. P., Panthi, B., Bhandari, R., Nyaupane, S., Dhakal, A. and Paudel, H. (2023b). Yield performance and stress tolerance indices of wheat genotypes under irrigated and rainfed condition. J. Innova. Agric. 10: 10-20.  
Poudel, M. R., Neupane, M. P., Panthi, B., Bhandari, R., Nyaupane, S., Dhakal, A. and Paudel, H. (2023c). Agromorphological analysis of wheat (Triticum aestivum L.) genotypes under combined heat and drought stress conditions. Farm. Manage. 8: 72-80.
Poudel, M., Paudel, H. K. and Yadav, B. P. (2015). Correlation of traits afffecting grain yield in winter maize (Zea mays L.) genotypes. Int. J. Appl. Sci. Biotechnol. 3: 443-45.
Purchase, J. L., Hatting, H. and van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South Afr. J. Plant Soil 17: 101-07. doi:10.1080/02571862.2000.10634878.
Puri, R. R., Tripathi, S., Bhattarai, R., Dangi, S. R. and Pandey, D. (2020). Wheat variety improvement for climate resilience. Asian J. Res. Agric. For. 6: 21–27. doi:10.9734/ AJRAF/2020/V6I230101.
Regmi, D., Poudel, M. R., Bishwas, K. C. and Poudel, P. B. (2021). Yield stability of different elite wheat lines under drought and irrigated environments using AMMI and GGE Biplots. Int. J. Appl. Sci. Biotechnol. 9: 98-106.  doi:10.3126/ijasbt.v9i2.38018.
Shewry, P. R. (2009). Wheat. J. Exp. Bot. 60:1537–53. doi:10.1093/jxb/erp058.
Shiferaw, B., Prasanna, B. M., Hellin, J. and Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3: 307-27.  doi:10.1007/s12571-011-0140-5.
Subedi, R., Bhatta, L. D., Udas, E., Agrawal, N. K., Joshi, K. D. and Panday, D. (2019). Climate-smart practices for improvement of crop yields in mid-hills of Nepal. Cogent Food Agric. 5. doi:10.1080/23311932.2019.1631026.
Thungo, Z., Shimelis, H., Odindo, A. and Mashilo, J. (2020a). Genotype-by-environment effects on grain quality among heat and drought tolerant bread wheat (Triticum aestivum L.) genotypes. J. Plant Interact. 15: 83–92. doi:10.1080/17429145.2020.1748732.
Thungo, Z., Shimelis, H., Odindo, A. and Mashilo, J. (2020b). Genotype-by-environment effects on grain quality among heat and drought tolerant bread wheat (Triticum aestivum L.) genotypes. J. Plant Interact. 15: 83–92. doi:10.1080/17429145.2020.1748732.
 
 

Global Footprints