Irrigation benefits for rainfed cassava cultivation regions in Vietnam based on LINTUL-Cassava model

Citation :- Irrigation benefits for rainfed cassava cultivation regions in Vietnam based on LINTUL-Cassava model. Res. Crop. 25: 73-78
T. D. PHUNG ptduong@dthu.edu.vn
Address : Faculty of Social Sciences Teacher Education, Dong Thap University, Vietnam
Submitted Date : 28-12-2023
Accepted Date : 4-03-2024


Globally, climate variability is expected to lead to an increase in temperature resulting in an increase in the water use requirement of various crops. The study was to evaluate the WUR of cassava crops across the rainfed cultivation regions (RCRs) of Phu Yen Province, Vietnam based on the LINTUL-Cassava model simulation under current condition and future climate of the RCP4.5 and RCP8.5 scenarios. The LINTUL-Cassava model was assessed with low errors (d = 0.86, R2 = 0.87, RMSE less than 15.0% and NRSME less than 5.0). Results revealed that the water use requirement of spring and summer crops decreased by approximately 10.8-19.0% and 40.2-51.2% correspond to timescales of 2011-2040, 2041-2070, and 2071-2099 of the RCP4.5 scenario while a significant uptrend up to 13.0% and 32.9% recorded for long term (2071-2099) of the RCP8.5 scenario. The study revealed that rainfed can be utilized effectively if the crop cultivation time (CCT) was fixed to adapt to the changed climate factors.


Biomass climate variability LINTUL-Cassava rainfed root yield


Adiele, J. G., Schut, A. G. T., van den Beuken, R. P. M., Ezui, K. S., Pypers, P., Ano, A. O., Egesi, C. N. and Giller, K. E. (2021). A recalibrated and tested LINTUL-Cassava simulation model provides insight into the high yield potential of cassava under rainfed conditions. Eur. J. Agron. 124: 1-12. doi:10.1016/j.eja.2021.126242.
Boansi, D. (2017). Effect of climatic and non-climatic factors on cassava yields in Togo: Agricultural Policy Implications. Climate 5: doi:10.3390/cli5020028.
Dang, T. A., Nguyen, V. H. and Mai, P. N. (2021). Utilizing rainfed supply and irrigation as a climate variability adaptation solution for coastal lowland areas in Vietnam. Agric. Nat. Resour. 55: 485–95.
Dinh, T. K. H. and Dang, T. A. (2023). Assessment of brackish water usability for irrigating the coastal sugarcane fields under the background of saline intrusion. Indian J. Agric Res. 57: 60-66. doi:10.18805/ijare.af-710.
Ezui, K., Leffelaar, P., Franke, A., Mando, A. and Giller, K. (2018). Simulating drought impact and mitigation in cassava using the LINTUL model. Field Crops Res. 219: 256–72. doi:10.1016/j.fcr.2018.01.033.
Lee, S. K. and Dang, T. A. (2019). Calibration and validation of the FAO-AquaCrop model for cassava in the Dong Xuan cultivation area of Phu Yen province using irrigation rainfall. Res. Crops 20: 555-562.
Lee, S. K. and Dang, T. A. (2020). Assessment of efficient crop planting calendar for cassava crops using the FAO-Aqua crop model. J. Agrometeorol. 22: 83-85. doi:10.54386/jam.v22i1.132.
Lee, S. K., Dang, T. A. and Ngo, T. M. L. (2020). Crop calendar shift as a climate change adaptation solution for cassava cultivation area of Binh Thuan province, Vietnam. Pak. J. Biol. Sci. 23: 946-52. doi:10.3923/pjbs.2020.946.952.
Mbanasor, J. A., Nwachukwu, I. N., Agwu, N. M. and Onwusiribe, N. C. (2015). Impact of climate change on the productivity of cassava in Nigeria. J. Agric. Environ. Sci. 4: 138-47.
Moreno-Cadena, P., Hoogenboom, G., Cock, J. H., Ramirez-Villegas, J., Pypers, P., Kreye, C., Tariku, M., Ezui, K. S., Lopez-Lavalle, L. A. B. and Asseng, S. (2021). Modeling growth, development and yield of cassava: A review. J. Field Crops Res. 267: 1–13. doi:10.1016/J.FCR.2021.108140.
Pham, M. P., Tong, T. H., Vu, D. D. and Nguyen, Q. K. (2021). Modelling for Hevea brasiliensis and Manihot esculenta plantations responses to climate change in Song Hinh district of Phu Yen Province, Vietnam. E3S Web of Conf. 285: doi:10.1051/e3sconf/202128502023.
Phoncharoen, P., Banterng, P., Morena Cadena, L. P., Vorasoot, N., Jogloy, S., Theerakulpisut, P. and Hoogenboom, G. (2021). Performance of the CSM–MANIHOT–Cassava model for simulating planting date response of cassava genotypes. Field Crops Res. 264:  doi:10. 1016/J.FCR.2021.108073.
Phoncharoen, P., Banterng, P., Vorasoot, N., Jogloy, S., Theerakulpisut, P. and Hoogenboom, G. (2018). Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 76: 376-88. doi:10.1590/1678-992X-2017-0413.
Rankine, D., Cohen, J., Murray, F., Moreno-Cadena, P., Hoogenboom, G., Campbell, J., Taylor, M. and Stephenson, T. (2021). Evaluation of DSSAT-MANIHOT-Cassava model to determine potential irrigation benefits for cassava in Jamaica. Agron. J. 113: 5317-34. doi:10. 1002/agj2.20876.
Ropo, O. I. and Ibraheem, A. A. (2017). Response of cassava and maize yield to varying spatial scales of rainfall and temperature scenarios in Port Harcourt. Res. J. Environ. Sci. 11: 137-42. doi:10.3923/rjes.2017.137.142.
Vongcharoen, K., Santanoo, S., Banterng, P., Jogloy, S., Vorasoot, N. and Theerakulpisut, P. (2018). Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica 56: 1398-413. doi:10.1007/s11099-018-0849-x.
Yen, H. P. H. and Hoai, N. T. (2021). Assessing climate risk to cassava (Manihot esculenta) yield based on rainfed. Res. Crops 22: 202-07.     
Zhang, S., Chen, X., Lu, C., Ye, J., Zou, M., Lu, K., Feng, S., Pei, J., Liu, C. and Zhou, X. (2018). Genome-wide association studies of 11 agronomic traits in cassava (Manihot esculenta Crantz). Front. Plant Sci. 9: 1-15. doi:10.3389/fpls.2018.00503.

Global Footprints