Maximizing cocoa (Theobroma cacao L.) seedling growth through liquid coconut shell smoke in Ultisols soil 

Citation :- Maximizing cocoa (Theobroma cacao L.) seedling growth through liquid coconut shell smoke in Ultisols soil. Res. Crop. 25: 128-134
Address : Department of Agrotechnology, Faculty of Agriculture, Science, and Technology, Panca Bhakti University, Jl. Kom Yos Sudarso, 78113 Pontianak, Indonesia
Submitted Date : 7-12-2023
Accepted Date : 8-02-2024


The crucial aspect of cocoa cultivation is ensuring the availability of seedlings with robust growth. Ultisols, a type of soil with potential for cocoa plant propagation, necessitate materials to enhance fertility when used as a growing medium. This includes the application of liquid smoke derived from coconut shells. To further study on this aspect this research aimed to determine the role of liquid coconut shell smoke on the growth of cocoa seedlings in Ultisols soil. The research was conducted in the laboratory and greenhouse of the Faculty of Agriculture, Panca Bhakti University, Pontianak, for 90 days from July to October 2023. The research used a complete randomized block design (CRBD) with four replications. The treatment concentrations of liquid coconut shell smoke (%) consisted of six levels: 0.00, 0.25, 0.50, 0.75, 1.00, and 1.25%. Each replication consisted of three cocoa plant seedling samples, resulting in a total of 72 plants for the entire research unit. The observed parameters included plant height increase (cm), the increase in the number of leaves (leaves), and the increase in stem diameter (mm). The research results found a very significant influence on all observed parameters. The treatment of liquid coconut shell smoke at a concentration of 0.75% yielded the highest results in terms of seedling height increase (29.09 cm), the number of leaves (14.08 leaves), and stem diameter (9.87 mm) compared to the control. This research finding shows that a concentration of 0.75% liquid coconut shell smoke can maximize the growth of cocoa seedlings in Ultisols soil through soil fertility improvement.


Cocoa Coconut shell liquid smoke Ultisols soil 


Abedi, M., Zaki, E., Erfanzadeh, R. and Naqinezhad, A. (2018). Germination patterns of the scrublands in response to smoke: The role of functional groups and the effect of smoke treatment method. South Afr. J. Bot. 115: 231–36. doi:10.1016/j.sajb.2017 .03.010.
Aisyah, I., Sinaga, M. S., Nawangsih, A. A., Giyanto and Pari, G. (2018). Utilization of liquid smoke to suppress blood diseases on bananas and its effects on the plant growth. Agrivita 40: 453-60. doi:10.17503/agrivita.v40i3.1390.
Anthonio, M. M., Boampong, E. Y., Coleman, F. N. and Anthonio, F. A. (2018). The impact of different growth media on cocoa ( Theobroma cacao L.) seedling. J. Energy Nat. Resour. Manag. 5: 56-61. doi:10.26796/jenrm.v5i1.117.
Aysegul, S. and Ibrahim, E. (2019). Effect of seedlings obtained from different growing media on tobacco growth and mineral nutrition. Mediterr. Agric. Sci. 32(Spl. Issue): 79-84. doi:10.29136/mediterranean.558333.
Bahrun, A. M., Rakian, T. C. N. and Madiki, A. (2019). Effect of different types of biochar on growth of cocoa seedlings (Theobroma cacao L.). Asian J. Crop Sci. 12: 12-18. doi:10.3923/ajcs.2020.12.18.
Bhardwaj, R. J. (2012). Effect of growing media on seed germination and seedling growth of papaya (Carica papaya) cv. “Red Lady.” J. Appl. Hortic. 14: 118-23. doi:10.24154/jhs.v8i1.332.
Cembrowska-Lech, D. and Kępczyński, J. (2017). Plant-derived smoke induced activity of amylases, DNA replication and β-tubulin accumulation before radicle protrusion of dormant Avena fatua L. caryopses. Acta Physiol. Plant. 39: doi:10.1007/s11738-016-2329-x.
Cruz Neto, R. de O., de Souza Júnior, J. O., Sodré, G. A. and Baligar, V. C. (2015). Growth and nutrition of cacao seedlings influenced by zinc aplication in soil. Rev. Bras. Frutic. 37: 1053-64. doi:10.1590/0100-2945-238/14.
Diptaningsari, D., Meithasari, D., Karyati, H. and Wardani, N. (2022). Potential use of coconut shell liquid smoke as an insecticide on soybean and the impact on agronomic performance. IOP Conference Series: Earth Environ. Sci. 985: 1-6. doi:10.1088/1755-1315/985/1/012058.
Elsadek, M. A. and Yousef, E. A. A. (2019). Smoke-water enhances germination and seedling growth of four horticultural crops. Plants 8: 1-17. doi:10.3390/plants8040104.
Gupta, S., Plačková, L., Kulkarni, M. G., Doležal, K., and van Staden, J. (2019). Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol. 181: 458-70. doi:10.1104/pp.19.00575.
Khatoon, A., Ur Rehman, S., Aslam, M. M., Jamil, M. and Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int. J. Mol. Sci. 21: 1-23. doi:10.3390/ijms21207760.
Kola, M. E., Mashela, P. W. and Lukhele-Olorunju, P. (2018). Response of Bradyrhizobium japonicum nodule variables to cucurbitacin-containing phytonematicides in cowpea (Vigna unguiculata L.) on N-deficient soil. Res. Crop. 19: 480-85.
Meng, Y., Shuai, H., Lu, X., Chen, F., Zhou, W., Yang, W. and Shu, K. (2017). Karrikins: Regulators involved in phytohormone signaling networks during seed germination and seedling development. Front. Plant Sci. 7: 1-9. doi:10.3389/fpls. 2016.02021.
Noel, R., Benoit, M., Wilder, S. L., Waller, S., Schueller, M. and Ferrieri, R. A. (2022). Treatments with liquid smoke and certain chemical constituents prevalent in smoke reduce phloem vascular sectoriality in the sunflower with improvement to growth. Int. J. Mol. Sci. 23: 1-17. doi:10.3390/ijms232012468.
Padjung, R., Saad, S. H., Bahrun, A. H. and Ridwan, I. (2019). Growth and development of Theobroma cacao seedlings as a response to different dosages of vermicompost and arbuscular mycorrhizal fungi. IOP Conference Series: Earth Environ. Sci. 343: doi:10.1088/1755-1315/343/1/012017.
Pawar, P. U., Kumbhar, C. T., Patil, V. S. and Khot, G. G. (2018). Effect of co-inoculation of Bradyrhizobium japonicum and Pseudomonas fluorescens on growth, yield and nutrient uptake in soybean [Glycine max (L.) Merrill]. Crop Res. 53: 57-62.
Prameswari, D. and Tata, H. L. (2004). Effect of planting media on the growfh of Shorea Pinanga Scheff. seedlings. Indonesian J. For. Res.. 1: 25-30. doi:10.20886/ijfr.2004. 1.1.25-30.
Selvia, I. N., Sahar, A. and Hasanah, Y. (2019). Growth response and N uptake of two soybean varieties on inoculation of Bradyrhizobium sp. in Ultisol Binjai, Sumatera Utara. IOP Conference Series: Earth Environ. Sci. 260: doi:10.1088/1755-1315/ 260/1/012129.
Smith, C. J., Perfetti, T. A., Garg, R. and Hansch, C. (2003). IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem. Toxicol. 41: 807-17. doi:10.1016/s0278-6915(03)00021-8.
Soil Survey Staff (2022). Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service.
Sreekissoon, A., Finnie, J. F. and Van Staden, J. (2021). Effects of smoke water on germination, seedling vigour and growth of Sceletium tortuosum. South Afr. J. Bot. 139: 427-31. doi:10.1016/j.sajb.2021.01.025.
Sriharti, Indriati, A. and Dyah, S. (2020). Utilization of liquid smoke from cocoa pod husk (Theobroma cocoa L) for germination of red seed (Capsicum annum L). Asian J. Appl. Sci. 08: 1-11. doi:10.24203/ajas.v8i1.6045.
Suh, N. N. and Molua, E. L. (2022). Cocoa production under climate variability and farm management challenges: Some farmers’ perspective. J. Agric. Food Res. 8: doi:10.1016/j.jafr.2022.100282.
Taisa, R., Maulida, D., Salam, A. K., Kamal, M. and Niswati, A. (2019). Improvement of soil chemical properties and growth of maize due to biochar application on Ultisol. J. Trop. Soils 24: doi:10.5400/JTS.2019.V24i3.101-107.
Tarigan, D. M., Siregar, H. A., Utami, S., Basyuni, M. and Novita, A. (2018). Seedling growth in response to cocoa (Theobroma cacao L.) for the provision of Guano fertilizer and mycorrhizal organic fertilizer in the nursery. Proc. Int. Conf. Sustain. Agric. Nat. Resour. Manag. pp. 47-50.
Wijayati, H. and Haqqi, H. (2022). The Indonesian global cocoa chain’s position in the pandemic era. Int. J. Social Sci. Econ. Art 12: 10-21. doi:10.35335/ijosea.v12i1.75.
Winarni, I., Gusmailina and Komarayati, S. (2021). A review: The utilization and its benefits of liquid smoke from lignocellulosic waste. IOP Conf. Series: Earth Environ. Sci. 914: 1-12. doi:10.1088/1755-1315/914/1/012068.
Yuniwati, E. D. and Lestari, A. M. (2020). Application of biochar and liquid smoke from biomass waste management to increase yields and raise farmers’ income. 477: 235-38. doi:10.2991/assehr.k.201017.052.

Global Footprints