Effect of salt stress on relative membrane injury, lipid peroxidation content and reactive oxygen species content of isabgol (Plantago ovata Forsk.) genotypes


Citation :- Effect of salt stress on relative membrane injury, lipid peroxidation content and reactive oxygen species content of isabgol (Plantago ovata Forsk.) genotypes. Res. Crop. 25: 160-164
Address : Department of Botany Govt. College, Hisar-125004, Haryana, India
Submitted Date : 28-11-2023
Accepted Date : 9-01-2024


Under the uncongenial growth condition imposed by salts in the edaphic environment, several biochemical changes take place in plants, which help them to survive under such a hostile environment. In the present study, an attempt has been made to obtain basic information about the effect of salt stress on relative membrane injury, lipid peroxidation content and reactive oxygen species content in isabgol (Plantago ovata Forsk.) genotypes. The changes in relative membrane injury, lipid peroxidation content and reactive oxygen species (ROS) content of P. ovata genotypes viz. GI-2, HI-96, PB-80 and HI-5 were studied under NaCl salt stress at different EC levels viz. control (without salt), 5 and 10 dS/m of nutrient supplemented NaCl salt solutions in sand filled polythene bags during 1st week of November 2022 in the Department of Botany Government College, Hisar. RMI, lipid peroxidation (MDA content) and ROS content of leaves increased with increasing EC levels in all the isabgol genotypes as studied at 58 days after showing. The highest increase in RMI was found in the genotype PB-80 and lowest in the genotype GI-2 at higher (10 dS/m) EC level over control. Increase in lipid peroxidation content which was measured in terms of MDA content was found highest in the genotype PB-80 while the lowest increase was detected in the genotype HI-5 at higher level (10 dS/m) of salt stress over control. Highest enhancement in ROS content of leaves in the genotype PB-80 and lowest increase in the genotype GI-2 was observed at higher (10 dS/m) EC level over control. The relative order of these parameters in various genotypes under salt stress was PB-80>HI-5>HI-96>GI-2.


Isabgol lipid peroxidation reactive oxygen species relative membrane injury salt stress  


Able, A. J., Sutherland, M. W. and Guest, D. I. (2003). Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells. Func. Plant Biol. 30: 91-99. doi:10.1071/FP02123.
Balasubramaniam, T., Shen, G.,  Esmaeili, N. and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants 12: doi:10.3390/plants12122253.
Dionisio-Sese, M. L. and Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9. doi:10.1016/S0168-9452(98)00025-9.
Farooq, S. and Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerance wheat varieties. J. Plant Physiol. 163: 629-37. doi:10.1016/j.jplph. 2005.06.006.
Guo, Q., Liu, L., Rupasinghe, T. W. T., Roessner, U. and Barkla, B. J. (2022). Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 189: 805-26. doi:10.1093/plphys/kiac123.
Hasanuzzaman, M., Bhuyan, M. H. M., Parvin, K., Bhuiyan, T. F., Anee, T. I., Nahar, K., Hossen, M., Zulfiqar, F., Alam, M. and Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 21: doi:10.3390/ijms21228695.
Hassemer, G., Bruun-Lund, S., Shipunov, A., Briggs, B. G., Meudt, H. M. and Rønsted, N. A. H. (2019). The application of high-throughput sequencing for taxonomy: The case of Plantago subg. Plantago (Plantaginaceae). Mol. Phylogenet Evol. 138: 156-73. doi:10. 1016/j.ympev.2019.05.013.
Heath, R. L. and Packer, L. (1968). Photo-peroxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 180-98.     doi:10.1016/0003-9861(68)90654-1.
Hnilickova, H., Kraus, K., Vachova, P. and Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10: doi:10.3390/plants10050845.
Hoagland, D. R. and Arnon, D. I. (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.
Kholova, J., Sairam, R. K., Meena, R. C. and Srivastava, G. C. (2009). Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol. Plant. 53: 249-56. doi:10.1007/s10535-009-0047-6.
Kohli, S. K., Khanna, K., Bhardwaj, R., Abd Allah, E. F., Ahmad, P. and Corpas, F. J. (2019). Assessment of sub-cellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants 8: doi:10.3390/antiox8120641.
Kumar, S., Li, G., Yang,  J., Huang,  X., Ji, Q., Liu, Z., Ke, W. and Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front. Plant Sci.12: doi:10.3389/fpls.2021.660409.
Ma, L., Liu, X.,  Lv , W. and Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Front. Plant Sci. 13: doi:10.3389/fpls.2022.934877.
Maia, J. M., De-Macedo, C. E. C., Voigt, E. L., Freitas, J. B. S. and Silveira, J. A. G. (2010). Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biol. Plant. 54: 159-63. doi:10.1007/s10535-010-0026-y.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S. and Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biotech. 9: 5475-80.
Polash, M. A. S., Sakil, M. A. and Hossain, M. A. (2019). Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. Trop. Plant Res. 6: 250-74. doi:10.22271/tpr.2019.v6.i2.035.
Rokins, P. D., Gopal, N. O. and Anandham, R. (2022). Modification of root architecture of rice by guard cell and rhizosphere halotolerant bacteria under saline stress. Res. Crop. 23: 729-36.
Sadak, M. S. and Talaat, I. M. (2021). Attenuation of negative effects of saline stress in wheat plant by chitosan and calcium carbonate. Bull. Natl. Res. Cent. 45: doi:10.1186/s42269-021-00596-w.
Sanwal, S. K., Kumar, P., Kesh, H., Gupta, V. K., Kumar, A., Kumar, A. Meena, B. L., Colla, G. G., Cardarelli, M. and Kumar, P. (2022). Stress tolerance in potato cultivars: evidence from physiological and biochemical traits. Plant. 11: doi:10.3390/plants11141842.
Souana, K., Taïbi, K., Abderrahim, L. A., Amirat, M., Achir, M., Boussaid, M. and Mulet, J. M.  (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Hort. 273: doi:10.1016/j.scienta.2020.109641.
Van Zelm, E., Zhang, Y. and Testerink, C. (2020). Salt tolerance mechanism of plants. Annu. Rev. Plant Biol.71: 403-33. doi:10.1146/annurev-arplant-050718-100005. 
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y. and Beyaz, R. (2020). Plant responses to salt stress. In: Plant breeding-current and future views. London, UK: IntechOpen. doi.10.5772/intechopen.93920.
Yu, D., Boughton, B. A., Hill, C. B., Feussner, I. and Rupasinghe, T. W. T. (2020). Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front. Plant Sci. 11: doi:10.3389/fpls.2020.00001.
Zhang, P., Zhang, F.,  Wu, Z., Cahaeraduqin, S., Liu, W. and Yan, Y. (2023). Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. Plant Cell Rep. 42: 1665-86. doi:10.1007/s00299-023-03052-3.

Global Footprints