Able, A. J., Sutherland, M. W. and Guest, D. I. (2003). Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells. Func. Plant Biol. 30: 91-99. doi:10.1071/FP02123.
Balasubramaniam, T., Shen, G., Esmaeili, N. and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants 12: doi:10.3390/plants12122253.
Dionisio-Sese, M. L. and Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9. doi:10.1016/S0168-9452(98)00025-9.
Farooq, S. and Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerance wheat varieties. J. Plant Physiol. 163: 629-37. doi:10.1016/j.jplph. 2005.06.006.
Guo, Q., Liu, L., Rupasinghe, T. W. T., Roessner, U. and Barkla, B. J. (2022). Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 189: 805-26. doi:10.1093/plphys/kiac123.
Hasanuzzaman, M., Bhuyan, M. H. M., Parvin, K., Bhuiyan, T. F., Anee, T. I., Nahar, K., Hossen, M., Zulfiqar, F., Alam, M. and Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 21: doi:10.3390/ijms21228695.
Hassemer, G., Bruun-Lund, S., Shipunov, A., Briggs, B. G., Meudt, H. M. and Rønsted, N. A. H. (2019). The application of high-throughput sequencing for taxonomy: The case of Plantago subg. Plantago (Plantaginaceae). Mol. Phylogenet Evol. 138: 156-73. doi:10. 1016/j.ympev.2019.05.013.
Heath, R. L. and Packer, L. (1968). Photo-peroxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 180-98. doi:10.1016/0003-9861(68)90654-1.
Hnilickova, H., Kraus, K., Vachova, P. and Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10: doi:10.3390/plants10050845.
Hoagland, D. R. and Arnon, D. I. (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.
Kholova, J., Sairam, R. K., Meena, R. C. and Srivastava, G. C. (2009). Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol. Plant. 53: 249-56. doi:10.1007/s10535-009-0047-6.
Kohli, S. K., Khanna, K., Bhardwaj, R., Abd Allah, E. F., Ahmad, P. and Corpas, F. J. (2019). Assessment of sub-cellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants 8: doi:10.3390/antiox8120641.
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W. and Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front. Plant Sci.12: doi:10.3389/fpls.2021.660409.
Ma, L., Liu, X., Lv , W. and Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Front. Plant Sci. 13: doi:10.3389/fpls.2022.934877.
Maia, J. M., De-Macedo, C. E. C., Voigt, E. L., Freitas, J. B. S. and Silveira, J. A. G. (2010). Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biol. Plant. 54: 159-63. doi:10.1007/s10535-010-0026-y.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S. and Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biotech. 9: 5475-80.
Polash, M. A. S., Sakil, M. A. and Hossain, M. A. (2019). Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. Trop. Plant Res. 6: 250-74. doi:10.22271/tpr.2019.v6.i2.035.
Rokins, P. D., Gopal, N. O. and Anandham, R. (2022). Modification of root architecture of rice by guard cell and rhizosphere halotolerant bacteria under saline stress. Res. Crop. 23: 729-36.
Sadak, M. S. and Talaat, I. M. (2021). Attenuation of negative effects of saline stress in wheat plant by chitosan and calcium carbonate. Bull. Natl. Res. Cent. 45: doi:10.1186/s42269-021-00596-w.
Sanwal, S. K., Kumar, P., Kesh, H., Gupta, V. K., Kumar, A., Kumar, A. Meena, B. L., Colla, G. G., Cardarelli, M. and Kumar, P. (2022). Stress tolerance in potato cultivars: evidence from physiological and biochemical traits. Plant. 11: doi:10.3390/plants11141842.
Souana, K., Taïbi, K., Abderrahim, L. A., Amirat, M., Achir, M., Boussaid, M. and Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Hort. 273: doi:10.1016/j.scienta.2020.109641.
Van Zelm, E., Zhang, Y. and Testerink, C. (2020). Salt tolerance mechanism of plants. Annu. Rev. Plant Biol.71: 403-33. doi:10.1146/annurev-arplant-050718-100005.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y. and Beyaz, R. (2020). Plant responses to salt stress. In: Plant breeding-current and future views. London, UK: IntechOpen. doi.10.5772/intechopen.93920.
Yu, D., Boughton, B. A., Hill, C. B., Feussner, I. and Rupasinghe, T. W. T. (2020). Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front. Plant Sci. 11: doi:10.3389/fpls.2020.00001.
Zhang, P., Zhang, F., Wu, Z., Cahaeraduqin, S., Liu, W. and Yan, Y. (2023). Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. Plant Cell Rep. 42: 1665-86. doi:10.1007/s00299-023-03052-3.
Balasubramaniam, T., Shen, G., Esmaeili, N. and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants 12: doi:10.3390/plants12122253.
Dionisio-Sese, M. L. and Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9. doi:10.1016/S0168-9452(98)00025-9.
Farooq, S. and Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerance wheat varieties. J. Plant Physiol. 163: 629-37. doi:10.1016/j.jplph. 2005.06.006.
Guo, Q., Liu, L., Rupasinghe, T. W. T., Roessner, U. and Barkla, B. J. (2022). Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 189: 805-26. doi:10.1093/plphys/kiac123.
Hasanuzzaman, M., Bhuyan, M. H. M., Parvin, K., Bhuiyan, T. F., Anee, T. I., Nahar, K., Hossen, M., Zulfiqar, F., Alam, M. and Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 21: doi:10.3390/ijms21228695.
Hassemer, G., Bruun-Lund, S., Shipunov, A., Briggs, B. G., Meudt, H. M. and Rønsted, N. A. H. (2019). The application of high-throughput sequencing for taxonomy: The case of Plantago subg. Plantago (Plantaginaceae). Mol. Phylogenet Evol. 138: 156-73. doi:10. 1016/j.ympev.2019.05.013.
Heath, R. L. and Packer, L. (1968). Photo-peroxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 180-98. doi:10.1016/0003-9861(68)90654-1.
Hnilickova, H., Kraus, K., Vachova, P. and Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10: doi:10.3390/plants10050845.
Hoagland, D. R. and Arnon, D. I. (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.
Kholova, J., Sairam, R. K., Meena, R. C. and Srivastava, G. C. (2009). Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol. Plant. 53: 249-56. doi:10.1007/s10535-009-0047-6.
Kohli, S. K., Khanna, K., Bhardwaj, R., Abd Allah, E. F., Ahmad, P. and Corpas, F. J. (2019). Assessment of sub-cellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants 8: doi:10.3390/antiox8120641.
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W. and Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front. Plant Sci.12: doi:10.3389/fpls.2021.660409.
Ma, L., Liu, X., Lv , W. and Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Front. Plant Sci. 13: doi:10.3389/fpls.2022.934877.
Maia, J. M., De-Macedo, C. E. C., Voigt, E. L., Freitas, J. B. S. and Silveira, J. A. G. (2010). Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biol. Plant. 54: 159-63. doi:10.1007/s10535-010-0026-y.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S. and Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biotech. 9: 5475-80.
Polash, M. A. S., Sakil, M. A. and Hossain, M. A. (2019). Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. Trop. Plant Res. 6: 250-74. doi:10.22271/tpr.2019.v6.i2.035.
Rokins, P. D., Gopal, N. O. and Anandham, R. (2022). Modification of root architecture of rice by guard cell and rhizosphere halotolerant bacteria under saline stress. Res. Crop. 23: 729-36.
Sadak, M. S. and Talaat, I. M. (2021). Attenuation of negative effects of saline stress in wheat plant by chitosan and calcium carbonate. Bull. Natl. Res. Cent. 45: doi:10.1186/s42269-021-00596-w.
Sanwal, S. K., Kumar, P., Kesh, H., Gupta, V. K., Kumar, A., Kumar, A. Meena, B. L., Colla, G. G., Cardarelli, M. and Kumar, P. (2022). Stress tolerance in potato cultivars: evidence from physiological and biochemical traits. Plant. 11: doi:10.3390/plants11141842.
Souana, K., Taïbi, K., Abderrahim, L. A., Amirat, M., Achir, M., Boussaid, M. and Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Hort. 273: doi:10.1016/j.scienta.2020.109641.
Van Zelm, E., Zhang, Y. and Testerink, C. (2020). Salt tolerance mechanism of plants. Annu. Rev. Plant Biol.71: 403-33. doi:10.1146/annurev-arplant-050718-100005.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y. and Beyaz, R. (2020). Plant responses to salt stress. In: Plant breeding-current and future views. London, UK: IntechOpen. doi.10.5772/intechopen.93920.
Yu, D., Boughton, B. A., Hill, C. B., Feussner, I. and Rupasinghe, T. W. T. (2020). Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front. Plant Sci. 11: doi:10.3389/fpls.2020.00001.
Zhang, P., Zhang, F., Wu, Z., Cahaeraduqin, S., Liu, W. and Yan, Y. (2023). Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. Plant Cell Rep. 42: 1665-86. doi:10.1007/s00299-023-03052-3.