The improvement of the CAPS-marker for St, J and V subgenome identification in Triticeae tribe plants using the 5S non-transcribed spacer polymorphism


Citation :- The improvement of the CAPS-marker for St, J and V subgenome identification in Triticeae tribe plants using the 5S non-transcribed spacer polymorphism. Res. Crop. 25: 12-19
Address : Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
Submitted Date : 16-11-2023
Accepted Date : 16-01-2024


In the Triticeae tribe, several subgenomes (St, J, V and others) were described, and a subgenome-specific molecular marker development is an actual branch of studies. Non-transcribed spacers (NTS) of 5S rDNA are perspective to create species-specific or genome-specific molecular markers in closely related organisms. Early, the 5S rDNA NTS based CAPS marker (StJV-f/StJV-r primers with the SmiM1 enzyme digestion) was designed for identification of the St, J and V subgenomes. The V subgenome amplicons were differed from the St and J amplicons in length. The St amplicons were distinguishable from the J amplicons after the SmiM1 enzyme digestion (St fragments were digested, J fragments were not digested, which is a disadvantage, because a failure with the digestion of St amplicons can be mistaken for J amplicons). This article presents the results of the StJV marker improvement. Comparative analysis of restriction enzyme maps revealed that the Hpy166 II enzyme cuts the StJV amplicons of all studied subgenomes in such a way that different product patterns are obtained. Experimental testing confirmed this finding. Thus, the improved CAPS marker can serve as a promising tool for verifying samples in Triticeae plant collections, screening herbarium materials, as well as in the breeding process aimed at improving wheat by involving its wild relatives in traditional breeding programs efficiently.


5S rDNA CAPS marker DNA polymorphism non-transcribed spacer (NTS) restriction enzyme 


Agafonov, A. V., Shabanova Kobozeva, E. V., Asbaganov, S. V., Mglinets, A. V. and Bogdanova, V. S. (2020). Identification of genome compositions in allopolyploid species of the genus Elymus (Poaceae: Triticeae) in the Asian part of Russia by CAPS analysis. Vavilovskii Zhurnal Genet. Selektsii. 24: 115-22. doi:10.18699/VJ20.606.
Alexandrov, O. S. and Karlov, G. I. (2018). Development of 5S rDNA-based molecular markers for the identification of Populus deltoides Bartr. ex-Marshall, Populus nigra L., and their hybrids. Forests 9: doi:10.3390/F9100604.
Alexandrov, O. S. and Karlov, G. I. (2019). The development of Populus alba L. and Populus tremula L. species specific molecular markers based on 5S rDNA non-transcribed spacer polymorphism. Forests 10: doi:10.3390/plants10122713.
Alexandrov, O. S. and Karlov, G. I. (2021). The development of new species-specific molecular markers based on 5S rDNA in Elaeagnus L. species. Plants 10:  doi:10.3390/plants10122713.
Alexandrov, O. S., Divashuk, M. G. and Karlov, G. I. (2018). Development of the St/J/V-genome specific molecular marker on basis of 5S-rDNA polymorphism. Mosc. Univ. Biol. Sci. Bull. 73: 18-23. doi:10.3103/S0096392518010017.
Alexandrov, O. S., Razumova, O. V. and Karlov, G. I. (2021). A comparative study of 5S rDNA non-transcribed spacers in Elaeagnaceae species. Plants 10: doi:10.3390/ plants10010004.
Al-Saghir, M. G. (2016). Taxonomy and phylogeny in Triticeae: a historical review and current status. Adv. Plants Agric. Res. 3: 139-43. doi:10.15406/apar.2016.03.00108.
Amangeldikyzy, Z., Galymbek, K., Gabdulov, M., Amangeldi, N., Irkitbay, A., Suleimanova, G. and Sapakhova, Z. (2023). Identification of new sources of wheat stem rust resistance genes. Res. Crop. 24: 15-27.
Avadhani, M. N. M., Selvaraj, C. I., Tharachand, C. and Rajasekharan, P. E. (2012). Molecular characterization of medicinal and aromatic plants by 5S rRNA NTS and PCR RFLP - A mini review. Res. Biotechnol. 3: 41-48.
Banks, P. M., Xu, S. J., Wang, R. R. and Larkin, P.J. (1993). Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome 36: 207-15. doi:10.2135/cropsci2009.02.0074.
Baum, B. R. and Bailey, L. G. (1997) The molecular diversity of the 5S rRNA gene in Kengyilia alatavica (Drobov) J. L. Yang, Yen & Baum (Poaceae: Triticeae): Potential genomic assignment of different rDNA units. Genome. 40: 215-28. doi:10.1139/g97-031.
Baum, B. R. and Bailey, L. G. (2000). The 5S rDNA units in Kengyilia (Poaceae: Triticeae): Diversity of the nontranscribed spacer and genomic relationships. Can. J. Bot. 78: 1571-79. doi:10.1139/CJB-78-12-1571.
Baum, B. R. and Johnson, D. A. (2000). The 5S rRNA gene units in the native New World annual Hordeum species (Triticeae: Poaceae). Can. J. Bot. 78: 1590-602.
Baum, B. R. and Johnson, D. A. (2008). Molecular confirmation of the genomic constitution of Douglasdeweya (Triticeae: Poaceae): Demonstration of the utility of the 5S rDNA sequence as a tool for haplome identification. Mol. Genet. Genom. 279: 621-28. doi:10.1007/s00438-008-0338-1.
Baum, B. R., Bailey, L. G., Johnson, D. A. and Agafonov, A. V. (2003). Molecular diversity of the 5S rDNA units in the Elymus dahuricus complex (Poaceae: Triticeae) supports the genomic constitution of St, Y, and H haplomes. Can. J. Bot. 81: 1091-103. doi:10.1139/B03-102.
Baum, B. R., Edwards, T. and Johnson, D. A. (2008). Loss of 5S rDNA units in the evolution of Agropyron, Pseudoroegneria, and Douglasdeweya. Genome. 51: 589-98. doi:10.1139/G08-045.
Baum, B. R., Edwards, T. and Johnson, D. A. (2015). Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol. Genet. Genom. 290: 329-42.                                  doi:10.1007/s00438-014-0907-4.
Baum, B. R., Edwards, T. and Johnson, D. A. (2016). Diversity within the genus Elymus (Poaceae: Triticeae) II: Analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes. Mol. Genet. Genom. 291: 217-25. doi:10.1007/s00438-015-1096-5.
Baum, B. R., Yang, J. L., Yen, C. and Agafonov, A. V. (2011). A taxonomic synopsis of genus Campeiostachys Drobov. J. Syst. Evol. 49: 146-59. doi:10.1111/j.1759-6831.2010.00106.x.
Baum, B. R., Yen, C. and Yang, J. L. (1991). Roegneria: Its generic limits and justification for its recognition. Can. J. Bot. 69: 282-94. doi:10.1139/B91-038.
Doyle, J. J. and Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Ferre, F. (1992). Quantitative or smi-quantitative PCR: reality versus myth. PCR Methods Appl. 2: 1-9. doi:10.1101/gr.2.1.1.
Hayes, R. C., Newell, M. T., DeHaan, L. R., Murphy, K. M., Crane, S., Norton, M. R., Wade, L. J., Newberry, M., Fahim, M., Jones, S. S., Cox, T. S. and Larkin P. J. (2012). Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Res. 133: 68-89. doi:10.1016/j.fcr.2012.03.014.
Kroupin, P. Y., Divashuk, M. G., Belov, V. I., Glukhova, L. I., Aleksandrov, O. S. and Karlov, G. I. (2011). Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Russ. J. Genet. 47: 432-37. doi:10.1134/S1022795411040077.
Krupin, P., Kuznetsova, V., Romanov, D., Kocheshkova, A., Karlov, G., Dang, T., Khuat, T., Kirov, I., Alexandrov, O., Polkhovskiy, A., Razumova, O. and Divashuk, M. (2019). Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes. 10: doi:10.3390/genes10020113.
Larkin, P. J., Newell, M. T., Hayes, R. C., Aktar, J., Norton, M. R., Moroni, S. J. and Wade, L. J. (2014). Progress in developing perennial wheats for grain and grazing. Crop Pasture Sci. 65: 1147-64. doi:10.1071/CP13330.
Li, H. and Wang, X. (2009). Thinopyrum ponticum and T. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 36: 557-65. doi:10.1016/S1673-8527(08)60147-2.
Li, X. M., Lee, B. S., Mammadov, A. C., Koo, B. C., Mott, I. W. and Wang, R. R. (2007). CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome. 50: 400-11.
Liu, L., Luo, Q., Teng, W., Li, B., Li, H., Li, Y., Li, Z. and Zheng, Q. (2018) Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta 247: 1099-108.
Liu, Z. L., Zhang, D., Wang, X., Ma, X. F. and Wang, X. R. (2003) Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Am. J. Bot. 90: 17-24.
Löve, A. (1982). Generic evolution of the wheat grasses. New Zealand J. Bot. 20: 169-86.
Meisam Zargar, Nazih Rebouh, Elena Pakina, Anvar Gadzhikurbanov, Marina Lyashko and Bashir Ortskhanov (2017). Impact of climate change on cereal production in the highlands of Eastern Algeria. Res. on Crops 18: 575-82. 
Mujeeb-Kazi, A. (1996). Cytogenetics of hybrids of Thinopyrum elongatum (2n = 2x = 14, or 2n = 4x = 28) with Hordeum vulgare, Secale cereale and Triticum turgidum. Cytologia. 61: 141-46. doi:10.1508/cytologia.61.141.
Orlovskaya, O. A., Leonova, I. N., Adonina, I. G., Salina, E. A., Khotyleva, L. V. and Shumny V. K. (2016). Molecular cytogenetic analysis of triticale and wheat lines with introgressions of the genetic material of Triticeae tribe species. Russ. J. Genet. Appl. Res. 6: 527-36. doi:10.1134/S2079059716050087.
Pendás, Á. M., Moran, P., Martínez, P. M. and Vázquez, E. G. (1995). Applications of 5S rDNA in Atlantic salmon, brown trout, and in Atlantic salmon brown trout hybrid identification. Mol. Ecol. 4: 275-76.
Szymanski, M., Barciszewska, M. Z., Erdmann, V. A., Barciszewski, J. and Barciszewska, M. Z. (2003). 5 S rRNA: Structure and interactions. Biochem. J. 371: 641-51. doi:10.1042/BJ20020872.
Wang, S., Wang, C., Feng, X., Zhao, J., Deng, P., Wang, Y., Zhang, H., Liu, X., Li, T., Chen, C., Wang, B. and Ji, W. (2022). Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat–Thinopyrum intermedium and wheat–Thinopyrum ponticum substitution lines. BMC Plant Biol. 22: doi:10.1186/s12870-022-03496-x.
West, J. G., McIntyre, C. L. and Apples, R. (1988). Evolution and systematic relationships in the Triticeae (Poaceae). Pl. Syst. Evol. 160: 1-28.

Global Footprints