Loading...

Impact of bio-digestate and fertilization on the soil chemical properties, growth and yield of maize (Zea mays L.)


Citation :- Impact of bio-digestate and fertilization on the soil chemical properties, growth and yield of maize (Zea mays L.). Res. Crop. 25: 33-42
ARUNA OLASEKAN ADEKIYA, OLUFUNMILAYO TITILAYO ANDE, SAMUEL OLATUNDE DAHUNSI, JOSHUA OGUNWOLE AND AYIBANOA LEKOO IBABA adekiya2009@yahoo.com
Address : Agriculture Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
Submitted Date : 2-11-2023
Accepted Date : 7-02-2024

Abstract

Recognizing the significance of maize cultivation, it is imperative to determine the appropriate levels of NPK fertilizer along with the supplementary inclusion of bio-digestate (an organic fertilizer), to achieve optimal soil chemical properties and crop yields. Hence, a field study was conducted in 2022 at the Teaching and Research Farm of Bowen University, Iwo, Osun State, Nigeria. The study evaluated the effects of bio-digestate fertilizer (D), applied alone and integrated with urea (N), single superphosphate (P) and muriate of potash fertilizers (K) at low (N1K1P1) and high (N2P2K2) rates on soil chemical properties, growth, and yield of maize (Zea mays (L.). The treatments consisted of application of: D at 2500 L/ha alone, D + N1 P1 K1, D + N1 P1 K2, D + N1 P2 K1, D + N1 P2 K2, D + N2 P1 K1, D + N2 P1 K2, D + N2 P2 K1, D + N2 P2 K2, Control. N1 = 60 kg N/ha, N2 = 120 kg N/ha, P1 = 30 kg P2O5/ha, P2 = 60 kg P2O5/ha, K1 = 30 kg K/ha, K2 = 60 kg K/ha. The 10 treatments were arranged in a randomized complete block design and replicated three times. Results showed that bio-digestate (D) fertilizer applied alone or integrated with NPK fertilizers improved soil chemical properties, growth, and yield of maize compared with the control. High rate of fertilizer DN2P2K2 increased soil chemical properties and growth parameters of maize relative to low rates DN1P1K1 whereas a higher yield was recorded at a low rate DN1P1Krelative to a high rate of fertilizer DN2P2K2. Overall, the treatment DN1P1K1 demonstrated the highest grain yield. D alone increased shelled maize yield by 187.9 % relative to no application of any amendment (control), also integrating D with N1P1K1 (DN1P1K1) increased maize yield by 97.2% relative to D alone.  Bio-digestate can be used for maize cultivation in lonely soil especially when integrated with NPK fertilizer. Therefore, to avoid waste of fertilizer due to cost and negative environmental effects of excessive fertilization, the lower rate of NPK fertilizer: N (60 kg N/ha), P (30 kg P2O5/ha), and K (30 kg K/ha) with 2500 L/ha of bio-digestate (DN1P1K1) is recommended for sustainable maize production.

Keywords

Bio-digestate fertilizer maize soil chemical properties urea 

References

Abd El-Gawad, A. M. and Morsy, A. S. M. (2017). Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays l.) and soil properties under Upper Egypt conditions. J. Plant Prod. 8: 1103-12. doi:10.21608/jpp.2017.41121.
Adekiya, A. O., Ogunboye, O. I., Ewulo, B. S. and Olayanju, A. (2020). Effects of different rates of poultry manure and split applications of urea fertilizer on soil chemical properties, growth, and yield of maize. Sci. World J. 2020: doi:10.1155/2020/4610515.
Adekiya, A. O. and Agbede, T. M. (2009). Growth and yield of tomato (Lycopersicon esculentum Mill) as influenced by poultry manure and NPK fertilizer. Emir. J. Food Agric. 21: 10-20.
Afreh, D. N., Afari, M. A. B., Adjei, R. R., Boateng, A. S., Santo, K. G. and Abdulai, M. (2022). Response of two maize (Zea mays L.) varieties to times of NPK (15-15-15) fertilizer application. Int. J. Agron. 2022: doi:10.1155/2022/7186913.
Ajiboye, G. A., Alabi K. O., Aiboni V. U., Okeleye, K. A. and Adesodun, J. K. (2011). Classification and suitability evaluation of the soils of a topo sequence at Odeda, Ogun State for the production of rice. Nigerian J. Soil Sci. 21: 142-55.
Akinrinde, E. A. and Obigbesan, G. O. (2000). Evaluation of the fertility status of selected soils for crop production in five ecological zones of Nigeria. In: Proceedings of the 26th Annual Conference of the Soil Science Society of Nigeria, (Ed. O. Babalola), 30 Oct–3 Nov, 2000 Ibadan, Nigeria. pp. 279-88.
Ande, O. T. and Senjobi, B. (2010). Lithologic discontinuity and pedogenetic characterization on an aberrant topo sequence associated with a rock hill in South Western Nigeria. Int. J. Phys. Sci. 5: 596- 604.
AOAC (2006). Official Methods of Analysis of the Association of Official Analytical Chemists. AOAC International, 18th Edn. 2005 (Eds W. Horwitz and G. W. Latimer). Gaithersburg, MD: AOAC International.
Bremner, J. M. (1996). Nitrogen-total. In: Methods of Soil Analysis. Part 3. Chemical Methods, 2nd Edn., D. L. Sparks, SSSA Book Series No. 5. WI: ASA and SSSA, Madison. pp. 85-121. doi:10.2136/sssabookser5.3.c37.
Crolla, A., Kinsley, C. and Pattey, E. (2013). Land application of digestate; Woodhead
Publishing Limited: Philadelphia, PA, USA. pp.302–25. doi:10.1533/9780857097415.2.302.
Dahunsi, S. O., Oranusi, S., Efeovbokhan, V. E., Adesulu‑Dahunsi, A. T. and Ogunwole, J. O. (2021). Crop performance and soil fertility improvement using organic fertilizer produced
from valorization of Carica papaya fruit peel. Sci. Rep. 11: doi:10.1038/s41598-021-84206-9.
Debebe, Y. and Itana, F. (2016). Comparative study on the effect of applying biogas slurry and inorganic fertilizer on soil properties, growth and yield of white cabbage (Brassica oleracea var. capitata f. alba). J. Biol. Agric. Healthcare 6: 19-26. doi:10.13140/RG. 2.2.22905.11367.
Dinka, T. B., Goshu, T. A. and Haile, E. H. (2018). Effect of integrated nutrient management on growth and yield of food barley (Hordeum vulgare) variety in toke Kutaye district, West Showa zone, Ethiopia. Adv. Crop Sci. Technol. 6: 1–8. doi:10.4172/2329-8863.1000365.
Di Maria, F., Barratta. M., Bianconi. F., Placidi, P. and Passeri, D. (2017). Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste
Manag.
59: 172–80. doi:10.1016/j.wasman.2016.10.039.
Faisal, S., Ahmad, B., Inamullah, Akhtar. K., Ali S. and Ullah, I. (2015). Effect of organic and inorganic fertilizers on penology of maize varieties. Pure Appl. Biol. 4: 434-40.
FAO (2014). Production Year Book, Food and Agriculture Organization of the United Nations, Rome, Italy.
Frank, K., Beegle, D. and Denning, J. (1998). Phosphorus. In: Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Research, Brown J. R. (ed.). Revised, Columbia: Missouri Agric. Exp. Station. Publication No. 221. pp. 21- 26.
Galvez, A., Sinicco, T., Cayuela, M. L., Mingorance, M. D., Fornasier, F. and Mondini, C. (2012). Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric. Ecosys. Environ. 160: 3–14. doi:10.1016/ j.agee.2011.015.
Gee, G. W. and Or, D. (2002). Particle-size analysis. In: Methods of Soil Analysis, Part 4, J. H. Dane and G. C. Topp (eds.). Madison, WI, USA: Physical Methods. Soil Science Society of America Book Series No. 5: 255-93. doi:org/10.2136/sssabookser5.4.c12.
Głowacka, A., Szostak, B. and Klebaniuk, R. (2020). Effect of biogas digestate and mineral fertilisation on the soil properties and yield and nutritional value of switchgrass forage. Agronomy 10: doi:10.3390/agronomy10040490.
IITA (2012). Research to Nourish Africa. International Institute of Tropical Agriculture Research report. pp. 7-10.
Iken, J. E., Amusa, N. A. and Obatolu, V. O. (2002).  Nutrient composition and weight evaluation of some newly developed maize varieties in Nigeria. J. Food Technol.7: 25-28. doi:10.4314/JFTA.V7I1.19315.
Naiji, M. and Souri, M. K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus 17:167-75. doi:10.24326/asphc.2018.2.14. 
Nelson, D. W. and Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, Part 3 – Chemical methods, D. L. Sparks, A. L. Page, P. A. Helmke and R. H. Loeppert (Eds.). Madison, WI: Soil Science Society of America, American Society of Agronomy. U.S.A. pp. 961-1010.  doi:10.2136/sssabookser5.3.c34.
Obidiebub, E., Achebe, U., Akparobi, S. and Kator, P. (2012). Effect of different levels of NPK (15:15:15) on the growth and yield of maize in rainforest agro-ecological zone, Int. J. Agric. Sci. 2: 1103–06.
Odlare, M., Pell, M. and Svensson, K. (2008). Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 28: 1246–53. doi:10.1016/j.wasman.2007.06.005.
Olasantan, F. O. (1991). Response of tomato and okra to nitrogen fertilizer in sole
cropping and intercropping with cowpea. J. Hort. Sci. 66: 191-99. doi:10.1080/00221589.1991.11516144.
Olasehinde, T. S., Qiao, F. and Mao, S. (2023). Impact of improved maize varieties on production efficiency in Nigeria: Separating technology from managerial gaps. Agriculture 13: doi:10. 3390/agriculture13030611.
Piatek, M. and Bartkowiak, A. (2019). Assessment of selected physicochemical properties of soil
fertilised with digestate. Water Environment-Rural Area 19: 55–66.
Ranum, P., Peña-Rosas, J. P. and Garcia-Casal (2014). Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312: 105–12. doi:10.1111/nyas.12396.
Ró˙zyło, K., Oleszczuk, P., Jo´sko, I., Kraska, P., Kwieci´nska-Poppe, E. and Andruszczak, S. (2015). An ecotoxicological evaluation of soil fertilised with biogas residues or mining waste. Environ. Sci. Poll. Res. 22: 7833-42. doi:10.1007/s11356-0143927-z.
Smyth, A. J. and Montgomery, R. F. (1962). Soils and land use in central western Nigeria. Ibadan, Nigeria: Government Printer. pp 265.
Soil Survey Staff (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
Stefaniuk, M., Bartminski, P., Ró˙zyło, K., D˛ebicki, R. and Oleszczuk, P. (2015).  Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. J. Hazard. Mater. 298: 195-202. doi:10.1016/j.jhazmat.2015.05.026.
Saveyn, H. and Eder, P. (2014). Editors. End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical Proposals Luxembourg. doi:10.2791/6295.
Usman, M., Madu, V. U. and Alkali, G. (2015). The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria. Int. J. Sci. Res. 5: 1-7.
Velazquez-Abad, A., Cherrett, T. and Holdsworth, P. (2015). Waste-to-fuel opportunities for British quick service restaurants: a case study. Resour. Conserv. Recycl. 104: 239-53. doi:10.1016/j.resconrec.2015.08.004.
Wall, D. M., Allen, E., O’Shea, R., O’Kiely, P. and Murphy, J. D. (2015). Investigating two-phase digestion of grass silage for demand-driven biogas applications: Effect of particle size and rumen fluid addition. Renew. Energy 86: 1215–23. doi:10.1016/j.renene.2015.09.049.
Yasar, A., Rasheed, R., Tabinda, A. B., Tahir, A. and Sarwar, F. (2017). Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renew. Sustain. Energy Rev. 67: 364–71. doi:10.1016/J.RSER.2016.09.026.
Zebider Alemneh (2011). The contribution of biogas production from cattle manure at household level for forest conservation and soil fertility improvement. Msc. Thesis, Addis Ababa University, Addis Ababa, Ethiopia.

Global Footprints