Impact of varied rates of NPK fertilizer on the microbial diversity of Jatropha zeyheri tea leaves under greenhouse conditions

Citation :- Impact of varied rates of NPK fertilizer on the microbial diversity of Jatropha zeyheri tea leaves under greenhouse conditions. Res. Crop. 25: 145-150
Address : Limpopo Agro-Food Technology Station, University of Limpopo, Private Bag X 1106, Sovenga, 0727, South Africa
Submitted Date : 2-11-2023
Accepted Date : 5-01-2024


Fertilization of Nitrogen (N), phosphorus (P) and potassium (K) is an effective strategy for improving tea yield and quality. Even though, NPK fertilization enhances tea yield and quality, addressing soil deficiencies to boost growth, but also impacts soil microbes, influencing nutrient cycling and yield. Therefore, the objective of this study was to assess the effect of different NPK fertilizer application rates on microbial composition of J. zeyheri tea under greenhouse conditions. Six treatments constituting NPK fertilizer rates (2:3:2 ratio) @ 0, 2, 4, 8, 16 and 32 g were arranged in a randomized complete block design, with five replications. 130 days after initiating treatments, leaves were harvested and oven-dried for 72 h at a temperature of 60°C. After laboratory preparations, microorganisms on tea leaves were determined by the principle most probable number using the Tempo reader (BioMerieux, Rodolphe, Durham, United States) instrument. Treatments had a highly significant effect (P ≤ 0.01) on Bacillus cereus contributing 39% in total treatment variation (TTV), whereas increasing NPK fertilizer rates had significant effects (P ≤ 0.05) on Enterobacteriaceae contributing 58% in TTV. Increasing rates of NPK fertilizer did not influence total coliforms contained in J. zeyheri tea leaf tissues. Bacillus cereus and Enterobacteriaceae over increasing NPK fertilizer rates exhibited positive quadratic relations, with density dependent growth pattern. Fertilizer requirements for Bacillus cereus and Enterobacteriaceae under greenhouse conditions were optimized at 1.75 g fertilizer/plant. In conclusion, Bacillus cereus and Enterobacteriaceae were affected by increasing NPK fertilizer rates.


Fertilizer indigenous tea microbial secondary metabolites tea quality


Arafat, S. M. Y., Shams, S. F., Chowdhury, M. H. R., Chowdhury, E. Z., Hoque, M. B. and Bari, M. A. (2017). Adaptation and validation of the Bangla version of the depression literacy questionnaire. J. Psychiatry 20: doi:10.4172/2378-5756.1000412.
Bango, H. and Mphosi, M. S. (2023). Effect of increased fertilization on the phytochemical constituents and antioxidant activity of Jatropha zeyheri tea under greenhouse conditions. Res. Crop. 24: 384-90. doi:10.31830/2348-7542.2023.ROC-923. 
Boor, K. J., Wiedmann, M., Murphy, S. and Alcaine, S. (2017). A 100-year review: Microbiology and safety of milk handling. J. Dairy Sci. 100: 9933-51. doi:10.3168/jds.2017-12969.
Carraturo, F., Castro, O., Troisi, J., Luca., A., Masucci, A., Cennamo, P., Trifuoggi, M., Aliberti, F. and Guida, M. (2018). Comparative assessment of the quality of commercial black and green tea using microbiology analyses. BMC Microbiol. 18: doi:10.1186/s12866-017-1142-z.
De Carvalho, A. O., Ribeiro, I., Cirani, C. B. S. and Cintra, R. F. (2016). Organizational resilience: A comparative study between innovative and non-innovative companies based on the financial performance analysis. Int. J. Innov. 4: 58-69. doi:10.5585/IJI.V4I1.73.
Gu, S., Wang, W., Wang, F. and Huang, J. H. (2016). Neuromodulator and emotion biomarker for stress induced mental disorders. Neural Plast. 2016: doi:10.1155/2016/2609128.
Hervert, C. J., Alles, A. S., Martin, N. H., Boor, K. J. and Wiedmann, M. (2016). Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. J. Dairy Sci. 99: 7033-42. doi:10.3168/jds.2016-11074.
Hu, A. H. (2019). Analysis of comprehensive utilization and sustainable development of crop straw (in Chinese). Agric. Technol. 39: 33-34.
Kalivas, A., Ganopoulos, I., Psomopoulos, F., Grigoriadis, I., Xanthopoulou, A., Hatzigiannakis, E., Osathanunkul, M., Tsaftaris, A. and Madesis, P. (2017). Comparative metagenomics reveals alterations in the soil bacterial community driven by N-fertilizer and Amino 16® application in lettuce. Genom. Data 14: 14-17. doi:10.1016/j.gdata.2017.07.013.
Li, J., Wang, J., Yang, Y., Cai, P., Cao, J., Cai, X. and Zhang, Y. (2020). Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: A retrospective analysis. Antimicrob. Resist. Infect. Control 9:                     doi:10.1186/s13756-020-00819-1.
Li, S. Y., Li, H. X., Yang, C. L., Wang, Y. D., Xue, H. and Niu, Y. F. (2016). Rates of soil acidification in tea plantations and possible causes. Agric. Ecosyst. Environ. 233: 60-66. doi:10.1016/j.agee.2016.08.036.
Louca, S., Polz, M. F., Mazel, F., Albright, M. B. N., Huber, J. A., O’Connor, M. I., Ackermann, M., Hahn, A. S., Srivastava, D. S., Crowe, S. A., Doebeli, M. and Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2: 936-43.  doi:10.1038/s41559-018-0519-1.
Martin, N. H., Trmcic, A., Hsieh, T., Boor, K. J. and Wiedmann, M. (2016). The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Front. Microbiol. 7: doi:10.3389/fmicb.2016.01549.
Metz, M., Sheehan, J. and Feng, P. C. H. (2020). Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses - A literature review. Food Microbiol. 85:                       doi:10.1016 /j.fm.2019.103283.
Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Pérès, G. and Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services - An overview of European approaches. Curr. Opin. Environ. Sustain 4: 529-38. doi:10.1016/j.cosust.2012.10.009.
Shi, Y., Zhang, K. P., Li, Q., Liu, X., He, J. S. and Chu, H. Y.  (2020). Inter-annual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. Sci. Total Environ. 714: doi:10.1016/j.scitotenv.2020.136794.
Shrestha, G. (2013). Decreased organic manure application in Kathmandu valley vegetable fields threatens the soil productivity. J. Nepal Agric. Res. Counc. 11: 61-69.
Tang, S., Zhou, Z., Pan, W., Sun, T., Liu, M., Tang, R., Li, Z., Ma, Q. and Wu, L. (2023). Effects of combined application of nitrogen, phosphorus, and potassium fertilizers on tea (Camellia sinensis) growth and fungal community. Appl. Soil Ecol. 181:               doi:10.1016/j.apsoil.2022.104661.
Ye, J., Wang, Y., Wang, Y., Hong, L., Jia, X., Kang, J., Lin, S., Wu, Z. and Wang, H. (2022). Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant Sci. 13: doi:10.3389/ fpls.2022. 1055900.
Zhang, Q. C., Shamsi, I. H., Xu, D. T., Wang, G. H., Lin, X. Y., Jilani, G., Hussain, N. and Chaudhry, A. N. (2012). Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure.  Appl. Soil Ecol. 57: 1-8. doi:10.1016/ j.apsoil.2012.02.012.
Zhang, W. S., Liang, Z. Y., He, X.M., Wang, X. Z., Shi, X. J., Zou, C. Q. and Chen, X. P. (2019). The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 246: 559-65. doi:10.1016/j.envpol.2018.12.059.
Zhao, H. X., Zhang, H. S. and Yang, S. F. (2014). Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness 3:183-90. doi:10.1016/j.fshw.2014.12.005.

Global Footprints