Biocontrol potential of rhizospheric fungi against Rigidoporus microporus, the causal agent of white root rot disease in tea plants

Citation :- Biocontrol potential of rhizospheric fungi against Rigidoporus microporus, the causal agent of white root rot disease in tea plants. Res. Crop. 25: 151-159
Address : Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM-21, Jatinangor 45363, Indonesia
Submitted Date : 2-11-2023
Accepted Date : 16-01-2024


White root rot disease (WRD), caused by Rigidoporus microporus, poses a serious threat to various tropical trees, resulting in substantial crop damage and even plant death. However, there is still a lack of information regarding WRD in tea plants. Due to soil-borne in nature, synthetic fungicide is not recommended to control WRD. Therefore, biocontrol using natural microorganisms found in the tea's rhizosphere has been explored as a potential solution. This study aimed to identify rhizospheric fungi of tea plants with antagonistic properties that can be used as a biocontrol agent against R. microporus. The study involved a field survey and laboratory works had been conducted in a tea plantation at Rancabali, West Java and the Phytopathology Laboratory, Faculty of Agriculture, Universitas Padjadjaran from March to October 2021. The disease incidence and severity were assessed in three blocks of land representing different topographic conditions of the plantation while antagonism tests were conducted using the completely randomized design and dual culture method. The results showed that the highest occurrence of WRD was in the central part of the hill with the disease incidence and severity of 70 and 50%, respectively. Thirteen fungal isolates were obtained from the rhizosphere of tea plants, all of which were found to inhibit the growth of R. microporus. These isolates belonged to the genera of Trichoderma, Gliocladium, Paecilomyces, Penicillium, Aureobasidium, Acremonium and Rhizopus. The considerable inhibition of R. microporus colony growth was performed by the isolates of Aureobasidium sp. (51.23%), Rhizopus sp. (50%), and Trichoderma sp. (43.96%). The results suggested that rhizospheric fungi of tea plants have the potential as biocontrol agents against R. microporus.


Aureobasidium disease incidence dual culture Rhizopus Trichoderma


Achmad, S., Hadi, S., Harran, S., Sa’id, E. G., Satiawiharja, B. and Kardin, M. K. (2010). In vitro antagonistic activity of T. harzianum and T. pseudokoningii against damping off pathogens of Pinus merkusii. J. Penel. Hutan Tanaman 7: 233-40. doi:10.20886/ jpht.2010.7.5.233-240.
Amaria, W., Harni, R. and Samsudin. (2015). Evaluation of antagonistic fungi in inhibiting the growth of Rigidoporus microporus causing white root disease in rubber plants. J. TIDP 2: 51-60. doi:10.21082/jtidp.v2n1.2015.p51-60.
Amaria, W., Taufiq, E. and Harni, R. (2013). Selection and identification of antagonistic fungi as biological agents of white root disease (Rigidoporus microporus) in rubber. J. TIDP 4: 55-64. doi:10.21082/jtidp.v4n1.2013.p55-64.
Arzanlou, M. and Khodaei, S. (2012). Aureobasidium iranianum, a new species on bamboo from Iran. Mycosphere 3: 404-08. doi:10.5943/mycosphere/3/4/2.
Auer, S. and Ludwig-Müller, J. (2015). Biological control of clubroot (Plasmodiophora brassicae) by the endophytic fungus Acremonium alternatum. J. Endocyt. Cell Res. 26: 43-49.
Auer, S. and Ludwig-Müller, J. (2023). Biocontrol of clubroot disease: how successful are endophytic fungi and bacteria? Eur. J. Plant Pathol. 167: 433-51. doi:10.1007/s10658-023-02701-3.
Barnett, H. L. and Hunter, B. B. (1987). Illustrated Genera of Imperfect Fungi. 3rd Ed. Macmillan Publishing Company, New York. pp. 218.
BPS-Statistics Indonesia (2021). Indonesian Tea Statistics 2021. BPS-Statistics Indonesia, Jakarta. pp. 99.
BPS-Statistics Indonesia. (2023). Plantation Area by Province (Thousand Hectare), 2019-2021. BPS-Statistics Indonesia, Jakarta.
Catharina, T. S. (2012). Strategi pengelolaan untuk memperkecil serangan jamur akar putih (Rigidoporus microporus) pada perkebunan jambu mente (Management strategies to minimize white root rot disease (Rigidoporus microporus) in cashew plantation). Ganec Swara 6: 69-73.
Chairudin, Agustinur, and Permadi, J. (2021). Efficacy of application time of Penicillium sp. suspension on white root fungus (Rigidoporus lignosus) in nutmeg (Myristica fragrans). IOP Conf. Ser.: Earth Environ. 819:  doi:10.1088/1755-1315/819/1/012014.
Choi, G.,  Kim, J. C.,  Jang, K.,  Nam, M.,  Lee, S. W. and  Kim, H. T. (2009). Biocontrol activity of Acremonium strictum BCP against botrytis diseases. Plant Pathol. J25: 165-71. doi:10.5423/PPJ.2009.25.2.165.
Cook, R. J. (1985). Biological control of plant pathogens: theory to application. Phytopathol. 75: 25-29. doi:10.1094/PHYTO-75-25.
Dutta, P., Mahanta, M., Singh, S.B., Thakuria, D., Deb, L., Kumari, A., Upamanya, G. K., Boruah, S., Dey, U., Mishra, A. K., Vanlaltani, L., VijayReddy, D., Heisnam, P. and Pandey, A.K. (2023) Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front. Plant Sci. 14: doi:10.3389/ fpls.2023.1145715.
FAO (2022). International Tea Market: Market Situation, Prospects and Emerging Issues. Markets and Trade Division-Economic and Social Development stream. Food and Agriculture Organization of the United Nations.
Gavíra, A. M., Huertas, V., Diánez, F., Montesinos, B. S. and Santos, M. (2020). Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 9: doi:10.3390/plants9121746.
Gizaw, B., Tsegay, Z., Tefera, G., Aynalem, E., Wassie, M. and Abatneh, E. (2017). Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr. J. Microbiol. Res. 11: 687-96.                          doi:10.5897/AJMR2017.8525.
Go, W. Z., Chin, K. L., H’ng, P. S., Wong, M. Y., Lee, C. L. and Khoo, P. S. (2023). Exploring the biocontrol efficacy of Trichoderma spp. against Rigidoporus microporus, the causal agent of white root rot disease in rubber trees (Hevea brasiliensis). Plants 12:  doi:10. 3390/plants12051066.
Go, W. Z., Chin, K. L., H'ng, P. S., Wong, M. Y., Luqman, C. A., Surendran, A., Tan, G. H., Lee, C. L., Khoo, P. S. and Kong, W. J. (2021). Virulence of Rigidoporus microporus isolates causing white root rot disease on rubber trees (Hevea brasiliensis) in Malaysia. Plants (Basel) 10: doi:10.3390/plants10102123.
Go, W. Z., H’ng, P. S., Wong, M. Y., Tan, G. H., Chuah, A. L., Salmiah, U., Toczyłowska-Mamińska, R., Soni, O., Wong, W. Z., Chin, K. L. and Chai, E. W. (2015). Occurrence and characterisation of mycoflora in soil of different health conditions associated with white root rot disease in Malaysia rubber plantation. J. Rubb. Res. 18: 159-70. 
Hardiyanti, S., Soekarno, B.P.W. and Yuliani, T.S. (2017). The ability of endophytic and rhizospheric microbes of rubber trees to control Rigidoporus lignosus. J. Fitopatol. Indones. 13: 153-60. doi:10.14692/jfi.13.5.153.
Hastuti, A. E. (2000). Sebaran penyakit akar putih (Rigidoporus microporus (Swatz) Van Ov) pada tanaman teh (Camellia sinensis (L.) O. Kuntze) di lapang dan eksplorasi beberapa cendawan antagonis (The distribution of white root disease (Rigidoporus microporus (Swatz) Van Ov) on tea plants (Camellia sinensis (L.) O. Kuntze) in the field and exploration of some antagonistic fungi). IPB University. pp. 80.
Kaewchai, S. and Soytong, K. (2010). Application of biofungicides against Rigidoporus microporus causing white root disease of rubber trees. J. Agric. Technol. 6: 394-63.
Kaewchai, S., Lin, F. C., Wang, H. K. and Soytong, K. (2010). Characterization of Rigidoporus microporus isolated from rubber trees based on morphology and ITS sequencing. Int. J. Agric. Technol. 6: 289-98.
Korsten, L., De Jager, E. S., De Villiers, E. E., Lourens, A., Kotze, J. M. and Wehner, F. C. (1995). Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado post-harvest diseases. Plant Dis. 79: 1149-56.         doi:10.1094/PD-79-1149.
Kumar, B. L. and Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5: 867-76. doi:10.1007/s13205-015-0293-6.
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z. and Barka, E.A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms 10: doi:10.3390/microorganisms10030596.
Lehmann-Danzinger, H. (2000). Diseases and pests of tea: overview and possibilities of integrated pest and disease management. J. Agric. Rural Dev. Trop. Subtrop. 101: 13-38.
Monkai, J., Hyde., K. D., Xu., J. and Mortimer, P. E. (2017). Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biol. Rev. 3: 1-11.                                  doi:10.1016/j.fbr.2016.08.003.
Nasahi, C., Yusuf, A. R., Hartati, S., Kurniadie, D. and Subakti-Putri, S. N. (2023). Yeast potential in controlling Aspergillus sp. causing fruit rot disease in dekopon oranges (Citrus reticulata ‘Shiranui’). Res. Crops 24: 407-15. doi:10.31830/2348-7542.2023.Roc-922.
Octriana, L. (2011). The potential of biological agents to inhibit growth of Phytium sp. in vitro. BPN 17: 138-42. doi:10.21082/blpn.v17n2.2011.
Onsando, J. M., Wargo, P. M. and Waudo, S. W. (1997). Distribution, severity, and spread of armillaria root disease in Kenya tea plantations. Plant Dis. 81: 133-37. doi:10.1094/PDIS.1997.81.2.133.
Otten, W., Bailey, D.J. and Gilligan, C.A. (2004). Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol. 163: 125-32.            doi:10.1111/j.1469-8137.2004.01086.x.
Parasayu, K. S., Wicaksono, K. S. and Munir, M. (2016). Pengaruh sifat fisik tanah terhadap jamur akar putih pada tanaman karet (The influence of soil physical properties on root rot fungus in rubber plants). J. TSL 3: 359-64.
Prasetyo, J., Aeny, T. N. and Suharjo, R. (2009). The correlations between white rot (Rigidoporus lignosus L.) incidence and soil characters of rubber ecosystem in Penumangan Baru, Lampung. J. Trop. Plant Pests Dis. 9: 149-57.                                        doi:10.23960/j.hptt.29149-157.
Saket Ranjan, Shrvan Kumar, Vishal Srivashtav and Virander Chaudhary (2023). Categorization of mycotoxin producing fungi in leguminous crops and its eco-friendly management under in vitro condition. Crop Res. 59: 79-86.
Salvamani, S. and Nawawi, N. M. (2014). Macroscopic and microscopic approaches for identification of fungi from plant soil of Cameron Highlands. Bioremediat. Sci. Technol. Res. 2: 14-18. doi:10.54987/bstr.v2I1.68.
Schena, L., Nigro, F., Pentimone, I., Ligorio, A. and Ippolito. A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol. Technol. 30: 209-20.doi:10.1016/S0925-5214(03)00111X.
Sun, E. J., Lin, H. S. and Hsieh, H. J. (2008). Study on Rosellinia necatrix isolates causing white root rot disease in Taiwan. J. Phytopathol. 156: 104-11. doi:10.1111/.1439-0434.2007.01326.x.
Tompong, S. and Kunasakdakul, K. (2014). Causal agent, symptoms and environmental factors of root rot disease of organic Assam tea in Mae Taeng District, Chiang Mai Province. Int. J. Agric. Technol Schena, L., Nigro, F., Pentimone, I., Ligorio, A. and Ippolito. A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol. Technol. 10: 767-77.
Toy, B. A., Langkuin, J. F., Karwur, F. F., Setyawan, B., Berlian, I., Rondonuwu, F. S., Martosupono, M. and Da Costa, J. F. (2018). Comparison the morphology of several colonies of white-rot root fungi (Rigidoporus microporus) from rubber plantation in Central Java and South Sumatera. Indonesian J. Nat. Rubb. Res. 36: 137-46.                   doi:10.22302/ppk.jpk.v36i2.562.
Wulandari, D., Sulistyowati, L. and Muhibuddin, A. (2014). Keanekaragaman jamur endofit pada tanaman tomat (lycopersicum esculentum Mill.) dan kemampuan antagonisnya terhadap Phytophthora infestans (Diversity of endophytic fungi in tomato plants (Lycopersicum esculentum Mill.) and their antagonistic abilities against Phytophthora infestans). J. HPT. 2: 110-18.
Yang, L., Xie, J., Jiang, D., Fu, Y., Li, G. and Lin, F. (2008). Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol. 24: 909-15. doi:10.1007/s11274-007-9626-x.
Yulia, E., Rahayu, A. and Suganda, T. (2022). Antagonism of rubber plant rhizospheric fungi against Rigidoporus microporus in in vitro and in planta. Jurnal Agro. 9: 64-79. doi:10.15575/17824.
Zhang, J. L., Tang, W. L., Huang, Q. R., Li, Y. Z., Wei, M. L., Jiang, L. L., Liu, C., Yu, X., Zhu, H. W., Chen, G. Z. and Zhang, X. X. (2021). Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front. Microbiol. 12: doi:10.3389/fmicb.2021.723828.

Global Footprints