Loading...

Responses of different growing media ratios growth performance of spinach (Spinacia oleracea L.) under greenhouse conditions

 


Citation :- Responses of different growing media ratios growth performance of spinach (Spinacia oleracea L.) under greenhouse conditions. Res. Crop. 25: 97-103
TSEKE PONTSHO, MULAUDZI CLEMENT, MAILA YVONNE AND MPHOSI MABOKO pontsho.tseke@ul.ac.za
Address : Limpopo Agro-Food Technology Station, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
Submitted Date : 5-09-2023
Accepted Date : 5-01-2024

Abstract

Spinach (Spinacia oleracea) vegetables are an important constituent of the diet of rural communities worldwide. It is a suitable substitute for several indigenous leafy vegetables, as it has more or less the same texture after cooking. Consequently, growers tend to grow spinach in any soil type or mixture available to them without modifying it, leading to reduced growth performance and yields. The use of animal manure is common in South Africa and helps to improve soil fertility when used in the correct ratio mixture. Therefore, the study’s objective was to investigate which of the growing media mixture (GMM) ratios of sand, Hutton soil, and goat manure would improve the growth and yield of S. oleracea under greenhouse conditions. The experiment was laid out in a randomized complete block design (RCBD), with 10 replicates (n=60). Six treatments comprised of different types of GMM namely, sand, Hutton soil, and goat manure at T1 (1:3:0 -control), T2 (1:2:1), T3 (1:1:1), T4 (1:1:2), T5 (2:1:2) and T6 (2:3:2), respectively. Growing media mixture had significant (P ≤ 0.05) effect on plant height (PH), number of leaves (NL), chlorophyll content (CC) and root length (RL) of S. oleracea, contributing 78, 62, 76 and 54% of the total treatment variation (TTV) in the respective variables. Relative to the control (T1), treatment T2, T3, T4, T5 and T6 increased PH by 22.75 cm, 24.03 cm, 27.92 cm, 22.84 cm and 24.35 cm, respectively. Similarly, the NL in all the treatments T2, T3, T4, T5 and T6 was increased by 10.90, 11.70, 11.90, 11.70 and 11.60, respectively, compared to T1. A related trend was observed in the CC, treatments T2, T3, T4, T5 and T6, increased the CC by 14.99, 15.08, 26.45, 21.38 and 15.83, respectively when compared to T1. The GMM treatment T4 obtained the highest 27.92, 11.9, 26.45 and 42.38 in PH, NL, CC and RL. In conclusion, GMM T4 had a positive effect on the growth and yield of S. oleraceae, and it is recommended for use to grow the vegetable crop.

Keywords

Food security growing media mixture leafy vegetable organic manure soil fertility

References

Abad, M., Noguera, P., Puchades, R., Maquieira, A. and Noguera, V. (2002). Physico- chemical and chemical properties of some coconut dusts for use as a peat substitute for containerized ornamental plants. Biores. Technol. 82: 241-45. doi:10.1016/s0960-8524(01)00189-4.
Abukutsa, M. O. and Kyele, S. K. (2003). Proceeding of the third workshop on sustainable horticultural production in the tropics. Maseno University, Maseno-Kenya. pp. 144-50.
Adugna, G. (2020). A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 4: 93-104. doi:10.14662/ARJASR2016.010.
Aminisarteshnizi, M. (2022). Molecular characters of Serratia marcescens, a bacterium associated with spinach rhizosphere in Limpopo Province, South Africa, using 16S rDNA. Res. Crop23: 437-41.
Bender, D. A. and Bender, A. E. (2005). A Dictionary of Food and Nutrition. New York: Oxford University Press. doi:10.1093/acref/9780199234875.001.0001.     
Bergquist, S. A. M., Gertsson, U. E. and Olsson, M. E. (2006). Influence growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J. Sci. Food Agric. 86: 346-55. doi:10.1002/jsfa.2373.
Bottino, A., Degl’Innocenti, E., Guidi, L., Graziani, G. and Fogliano, V. (2009). Bioactive compounds during storage of fresh-cut spinach: The role of endogenous ascorbic acid in the improvement of product quality. J. Agric. Food Chem. 57: 2925-31.
Cho, W., Ravindran, B., Kim, J. K., Jeong, K., Lee, D. J. and Choi, D. (2017). Nutrient status and phytotoxicity analysis of goat manure discharged from farms in South Korea, Environ.Technol. 38:1191-99. doi:10.1080/09593330.2016.1239657.
DAFF (2010). Department of Agriculture, Forestry and Fisheries: Spinacia oleracea production    guideline, South Africa.
Gaikwad, P. S., Shete, R. V. and Otari, K. V. (2010). Spinacia oleracea Linn: A pharmacognostic and pharmacological overview. Int. J. Res. Ayurveda Pharm. 1: 78-84.
Ghasemi, A. and Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10: 486-89. doi:10.5812/ijem.3505.
Jacobs, D. F., Landis, T. D. and Luna, T. (2009). Growing media. In: Nursery manual for native plants (Eds. Dumroese, R. K., Luna, T., Landis, T. D.). A guide for tribal nurseries-Volume 1: Nursery management. Agriculture Handbook 730. Washington, D.C.: U.S. pp. 77-93.   
Koninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A. and Briones, M. J. I. (2021). Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agric. Syst. 194: 103251. doi:10.1016/j.agsy.2021.103251.
Mbatha, K. C., Mchunu, C. N., Mavengahama, S. and Ntuli, N. R. (2021). Effect of poultry and goat manures on the nutrient content of Sesamum alatum leafy vegetables. Appl. Sci. 11doi:10.3390/app112411933.
Nkweke, I. A., Ijearu, S. I and Igili, D. N. (2013). Effect of different sources of animal on the growth and yield of okra (Abelmoschus Escilentus L. Moech) In Ustoxic Dystropept at Engu South Eatern, Nigeria. Int. J. scient. Tec. Res. 2: 2277-8616.   
Odedina, J. N., Odedina, S. A. and Ojeniyi, S. O. (2011). Effect of types of manure on growth and yield of cassava (Manihot esculenta, Crantz). Researcher 2: 1-8.   
Ogunlela, V., Masarirambi, M. and Makuza.  S. M. (2005). Effect of cattle manure application on pod yield and yield indices of okra (Abelmoschus esculentus L. Moench) in a semi-arid subtropical environment. J. Food Agric. Env. 3: 125-29.  
Parwada, C., Chigiya, V., Ngezimana, W. and Chipomho, J. (2020). Growth and performance of baby spinach (Spinacia oleracea L.) grown under different organic fertilizers.Int. J. Agron. doi:10.1155/2020/8843906.
Roughani, A. (2011). Effect of colchicin, trifluralin and oryzalin on polyploid induction in spinach. MSc Thesis of Horticultural Science. Islamic Azad University, Karaj Branch, Iran.
Saputra, D., Handajaningsih, M. and Hermawan, B. (2017). Effect of incubation of goat manure on growth and yield of sweet corn. Akta. Agrosia. 20: 43-47. doi:10.31186/aa.20.2.43-47.
SAS Institute INC (2008). SAS/STAT® 9.2 Qualification Tools User’s Guide. SAS Institute Inc, Cary, North Carolina, U.S.A.
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika. 52: 591-611. doi:10.2307/2333709.
Sutanto, R. (2002). Application of Organic Agricultural. Publisher Kanisius. Yogyakarta. pp. 219.
Taimiyu, R. A., Ahames, H. G. and Muhammad, A. S. (2012). Effect of sources of organic manure on growth and yield of okra. Nig. J. Basic Appl. Sci. 20: 213-16.
USEPA. (2013). Literature review of contaminants in livestock and poultry manure and implications for water quality. Office of Water 4304T EPA 820-R-13_002, 18-137.
Uwah, D. F. and Eyo, V. E. (2014). Effects of number and rate of goat manure application on soil properties, growth and yield of sweet maize (Zea mays L. saccharata Strut.). Sust. Agric. Res. 3: 75-83.
Vendrame, A. W., Maguire, I. and Moore, K. K. (2005). Growth of selected bedding plants as effected by different-by-different compost percentages. Fla. State Hort. Soc.18: 368-371.
Verma, S. (2018). A study on medicinal herb Spinacia oleraceae Linn: Amaranthaceae. J. Drug Deliv. Ther. 8: 59-61. doi:10.22270/jddt.v8i4.1767.
Yüksel, T., Öztekin, G., Tüzel, İ. H. and Duyar, H. (2020). Growing Media in Organic Seedling Production. Ege Üniv. Ziraat Fak. Derg. 57: 603-10. doi:10.18690/978-961-286-045-5.17.
 

Global Footprints