Loading...

Impact of eco-physiological factors on the weed seed germination and emergence: A review on its role in weed management

Citation :- Impact of eco-physiological factors on the weed seed germination and emergence: A review on its role in weed management. Res. Crop. 24: 749-758
JING FENG, BAHRAN KNFE YAKOB, SHIMENDI GDE OKBAGABIR, GHEBRIEL OKBATINSAE DEKIN, ERICKSON TCHUDA LOPES MAM AND MEISAM ZARGAR shimendigde20@gmail.com
Address : Department of Agrobiotechnology, Agrarian Institute Technological RUDN University, Moscow, Russia
Submitted Date : 14-06-2023
Accepted Date : 15-10-2023

Abstract

Dormancy is a typical feature of many weed seed populations, which makes forecasting the time and magnitude of weed emergence difficult. The mean minimum temperatures required for undergoing germination of different weed seeds varies considerably depending on the place of their origin as well as the season on which the plants grow. For instance, the temperature requirement for the germination of summer weeds was observed to be 40% higher than for the winter weeds. Decreasing the water potential from 0 Mpa (mega pascal) to -1.0 Mpa tends to reduce the germination capacity of many weed seeds with some seeds totally failing to germinate at -1.0 Mpa (Chloris truncate, Retama raetam). The effects of planting depth on seed germination and seedling growth of Aframomum citratum on varied soil types indicated that sowing depth greatly influenced the plant's cumulative germination percentage and early growth. The seeds of Sysimbrium officinale (L.), a summer annual species, displayed greater sensitivity to nitrates and lost dormancy throughout the winter. The germination of Thlaspi arvense was also discovered to be stimulated by nitrate only in the presence of light. Tilling the surface of soil has a positive impact in the weed seed germination, however if the tillage depth increases more than 9cm, it tends to lower down the germination of several weed species. However, weed seeds of Bernard grass are among the exceptions in which they germinate better at a shallow depth (2cm). The nature and the thickness of the mulching component influence the germination of weed seeds. Thicker mulches and mulching materials like pearl millet resulted in a greater suppression of the weed seed germination due to an increased allelopathic effects. 

Keywords

Conservation tillage dormancy ecological factors emergence germination weed

References

Abdellaoui, R., Fayçal Boughalleb, F., Dhikra Zayoud, D., Mohamed Neffati, M. and Bakhshandeh, E. (2019). Quantification of Retama raetam seed germination response to temperature and water potential using hydrothermal time concept. Environ. Exp. Bot. 157: 211-16.
Amini, R., Gholami, F. and Ghanepour, S. (2017). Effects of environmental factors and burial depth on seed germination and emergence of two populations of Caucalis platycarpos. Weed Res. 57: 247–56. doi.org/10.1111/wre.12259.
Anjah, M. G. and Christiana, N. N. M. (2020). Effects of sowing depth on seed germination and seedling growth of Aframomum citratum (Pereira) K. Schum. Afr. J. Plant Sci. 14: 262-69. doi.org/10.5897/ajps2018.1728.
Bajwa, A. A., Zulfiqar, U., Sadia, S., Bhowmik, P. and Chauhan, B. S. (2019). A global perspective on the biology, impact, and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds. Sci. Pollut. Res. 26: 5357-71. doi.org/10.1007/s11356-018- 04104-y.
Baskin, C. C. and Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination, 2nd ed., San Diego, CA: Elsevier/Academic Press. pp. 1600.
Bastos, L. L. S., Ferraz, I. D. K., Junior, M. J. V. L. and Pritchard, H. W. (2017). Variation in limits to germination temperature and rates across the seed-seedling transition in the palm Oenocarpus bataua from the Brazilian Amazon. Seed Sci. Technol. 45: 1-13.
Batlla, D. and Benech-Arnold, R. L. (2005). Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytol. 165: 445-52. doi: 10.1111/j.1469-8137.2004. 01262.x
Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C. and Ghersa, C. M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67: 105-22.
Benvenuti, S. (2003). Soil texture involvement in germination and emergence of buried weed seeds. Agron. J. 95: 191-98. doi.org/10.2134/agronj2003.0191.
Benvenuti, S. (2007). Natural weed seed burial: Effect of soil texture, rain and seed characteristics. Seed Sci. Res. 17: 211-19. doi.org/10.1017/S0960258507782752.
Benvenuti, S. and Mazzoncini, M. (2018). Soil physics involvement in the germination ecology of buried weed seeds. Plants8: doi.org/10.3390/plants8010007.
Benvenuti, S. and Mazzoncini, M. (2019). Soil physics involvement in the germination ecology of buried weed seeds. Plants 8: doi.org/10.3390/plants 8010007.
Benvenuti, S., Macchia, M. and Miele, S. (2001). Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 49: 528-35. doi.org/10.1614/0043-1745(2001)049[0528:qaoeos]2.0.co;2
Blubaugh, C. K. and Kaplan, I. (2015). Tillage compromises weed seed preda­tor activity across   developmental stages. Biol. Control 81: 76–82.
Brown, R. (2018). Effect of Temperature. Physical Testing of Rubber. doi:10.1007/0-387-29012-5.
Bryant, A., D. C. Brainard, E. R. Haramoto and Szendrei, Z. (2013). Cover crop mulch and weed management influence arthropod communities in strip-tilled cabbage. Environ. Entomol. 42: 293–306.
Burmeier, S., Donath, T. W., Otte, A. and Eckstein, R. L. (2010). Rapid burial has differential effects on germination and emergence of small- and large-seeded herbaceous plant species. Seed Sci. Res. 20: 189-200. doi.org/10.1017/S0960258510000127.
Chauhan, B. S. and Johnson, D. E. (2008). Influence of environmental factors on seed germination and seedling emergence of eclipta (Eclipta prostrata) in a tropical environment. Weed Sci. 56: 383-88.
Chauhan, B. S., Ali, H. H. and Florentine, S. (2019). Seed germination ecology of Bidens pilosa and its implications for weed management. Sci. Rep. 9: doi.org/10.1038/s41598-019-52620-9.
Chauhan, B. S., Manalil, S., Florentine, S. and Jha, P. (2018). Germination ecology of Chloris truncata and its implication for weed management. PLoS ONE. 13: doi.org/10.1371/journal. pone.0199949.
Cheema, Z. A., Khaliq, A., Abbas, M. and Farooq, M. (2007). Allelopathic potential of sorghum (Sorghum bicolor L. Moench) cultivars for weed management. Allelopathy J. 20: 167-78
Colbach, N., Chauvel, B., Durr, C. and Richard, G. (2002a). Effect of environmental conditions on Alopecurus myosuroides germination. I. effect of temperature and light. Weed Res. 42: 210-21. doi: 10.1046/j.1365-3180.2002. 00279.x.
Colbach, N., Dürr, C., Chauvel, B. and Richard, G. (2002b). Effect of environmental conditions on Alopecurus myosuroides germination. II. Effect of moisture conditions and storage length. Weed Res. 42: 222-30. doi: 10.1046/j.0043-1737.2002. 00280.x.
Couture, S. J., DiTommaso, A., Asbil, W. L. and Watson, A. K. (2004). Influence of seeding depth and seedbed preparation on establishment, growth and yield of fibre flax (Linum usitatissimum L.) in Eastern Canada. J. Agron. Crop Sci. 190: 184-90.
Desikan, R., Griffiths, R., Hancock, J. and Neill, S. (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 99: 16314-18.
Dürr, C., Dickie, J. B., Yang, X. Y. and Pritchard, H. W. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: Contribution to a seed trait database, Agric. For. Meteorol. 200: 222-32.
El-Beltagi, H. S., Basit, A., Mohamed, H. I., Ali, I., Ullah, S., Kamel, E. A. and Ghazzawy, H. S. (2022). Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 12: doi.org/10.3390/agronomy12081881.
Farooq, M., Hussain, M., Nawaz, A., Lee, D. J., Alghamdi, S. S. and Siddique, K. H. M. (2017). Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol. Biochem. 111: 274-83.
Fenner, M. and Thompson, K. (2005). The ecology of seeds: Seed dormancy. Cambridge University Press. doi. org/10.1017/CBO9780511614101, 5: 97-109. 
Finch‐Savage, W. E., Cadman, C. S., Toorop, P. E., Lynn, J. R. and Hilhorst, H. W. (2007). Seed dormancy release in Arabidopsis Cvi by dry after‐ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. The Plant J. 51: 60-78.
Forcella, F., Benech-Arnold, R. L., Sanchez, R., and Ghersa, C. M. (2000). Modeling seedling emergence. Field Crops Res. 67: 123-39. doi: 10.1016/S0378-4290(00)00088-5.
Gianinetti, A., Laarhoven, L. J., Persijn, S. T., Harren, F. J. and Petruzzelli, L. (2007). Ethylene production is associated with germination but not seed dormancy in red rice. Annals Bot. 99: 735-45.
Głąb, L., Sowiński, J., Bough, R. and Dayan, F. E. (2017). Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Adv. Agron. 145: 43-95.
Grundy, A. C., Mead, A. and Burston, S.  (2003). Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. J. Appl. Ecol. 40: 757-70. doi.org/10.1046/j.1365-2664.2003.00836.x.
Jarvis, J. C. and Moore, K. A. (2008). Influence of environmental factors on Vallisneria americana seed germination. Aquatic Bot. 88: 283-94.
John, K. N., Valentin, V., Abdullah, B., Bayat, M., Kargar, M. H. and Zargar, M. (2020). Weed mapping technologies in discerning and managing weed infestation levels of farming systems. Research on Crops 21: 93-98.
Karimmojeni, H., Taab, A., Rashidi, B. and Hossein Bazrafshan, A. (2014). Dormancy breaking and seed germination of the annual weeds Thlaspi arvense, Descurainia sophia and Malcolmia africana (Brassicaceae). J. Plant Prot. Res. 54: 179-87.
Kimmelshue, C. L., Goggi, S. and Moore, K. J. (2022). Seed size, planting depth, and a perennial groundcover system effects on corn emergence and grain yield. Agronomy 12: doi.org/10.3390/ agronomy12020437.
Lai, L., Chen, L., Zheng, M., Jiang, L., Zhou, J., Yuanrun Zheng, Y. and Shimizu, H. (2019). Seed germination and seedling growth of five desert plants and their relevance to vegetation restoration. Ecol. Evol. 2019: doi.10.1002/ece3.4910.
Lin, J., Shi, Y., Shuang, T., Yu, X., Yu, D. and Yan, X. (2017). Seed-germination response of Leymus chinensis to cold stratification in a range of temperatures, light and low water potentials under salt and drought stresses. Crop Pasture Sci. 68: doi.10.1071/CP16402.
Luna, J. M., Mitchell, J. P. and Shrestha, A. (2012). Conservation tillage for or­ganic agriculture: Evolution towards hybrid systems in the western USA. Renewable Agric. Food Syst. 27: 21–30.
Lundgren, J. G. and J. K. Fergen.  (2010). The effects of a winter cover crop on Diabrotica virgifera (Coleoptera: Chrysomelidae) populations and beneficial arthropod communities in no-till maize. Environ. Entomol. 39: 1816-28.
Ma, Y. (2011). Study on Screening of Forage Species Fittingly Cultivated in Black-Soil beach. Chinese Qinghai Journal of Animal & Veterinary Sciences.
Ma, Y., Shi, J. J. and Dong, Q. M. (2011). Study on screening of forage species fittingly cultivated in black-soil beach. Chinese Qinghai J. Ani. Vet. Sci41: 1-4.
Mandák, B. and Pyšek, P. (2001). The effects of light quality, nitrate concentration and presence of bracteoles on germination of different fruit types in the heterocarpous Atriplex sagittataJ.  Ecol. 89: 149-58.
Mao, P., Guo, L., Gao, Y., Qi, L. and Cao, B. (2019). Effects of seed size and sand burial on germination and early growth of seedlings for coastal Pinus thunbergii Parl. in the Northern Shandong Peninsula, China. Forests 10: doi.org/10.3390/f10030281.
 Maraghni, M., Gorai, M. and Neffati., M. (2010). Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. South Afr. J. Bot. 76: 453-59. 
Martins, B. A. B. and Christoffoleti, P. J. (2015). Buttonweed emergence as affected by seed burial depth and straw on the soil surface. Scientia Agricola 72: 489-94.
Masin, R., Zuin, M. C., Archer, D. W., Forcella, F. and Zanin, G. (2005). Weed Turf: a predictive model to aid control of annual summer weeds in turf. Weed Sci. 53: 193-201. doi: 10.1614/WS-04-066R1.
McDaniel, K. C. and Ross, T. T. (2002). Snakeweed: poisonous properties, livestock losses, and management considerations. J. Range Manag. 55: 277-84.
Menalled, F. D., Smith, R. G., Dauer, J. T. and Fox, T. B. (2007). Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosyst. Environ. 118: 49-54.
Michael, W. and Andrew, M. (2017). Tillage and farming system-impacts on weed germination and seedbank longevity. Queensland Department of Agriculture and Fisheries, Toowoomba.
Motsa, M. M., Slabbert, M. M., Averbeke, W. V. and Morey, L. (2015). Effect of light and temperature on seed germination of selected African leafy vegetables. South Afri. J. Bot. 99: 29-35.
Oliveira, Jr. R. S., Rios, F. A., Constantin, J., Ishii-Iwamoto, E. L., Gemelli, A. and Martini, P. E. (2014). Grass straw mulching to suppress emergence and early growth of weeds. Planta Daninha 32: 11-17.
Qasem, J. R. (2019). Weed seed dormancy: The ecophysiology and survival strategies. In: Seed dormancy and germination. Intech Open. doi. 10.5772/intechopen.88015.
Restuccia, A., Lombardo, S. and Mauromicale, G. (2019). Impact of a cultivation system upon the weed seedbank size and composition in a Mediterranean environment. Agriculture 9: RePEc:gam: jagris:v:9:y:2019:i:9:p:192-:d:264364.
Rosbakh, S. and Poschlod, P. (2015). Initial temperature of seed germination as related to species occurrence along a temperature gradient. Funct. Ecol. 29: 5-14.
Saeed, A., Hussain, A., Khan, M. I., Arif, M., Maqbool, M. M., Mehmood, H. and Elshikh, M. S. (2020). The influence of environmental factors on seed germination of Xanthium strumarium L.: Implications for management. PLoS One 15: doi: 10.1371/journal.pone.0241601. 
Singh, M., Thapa, R., Kukal, M. S., Irmak, S., Mirsky, S. and Jhala, A. J. (2022). Effect of water stress on weed germination, growth characteristics, and seed production: a global meta-analysis. Weed Sci. 70: 621-40. doi: 10.1017/wsc.2022.59.
Singh, S. and Singh, M. (2009). Effect of temperature and water potential on germination of twelve weed species. Indian J. Weed Sci. 41: 134-45.
Steckel, L. E., Sprague, C. L., Stoller, E. W. and Wax, L. M. (2004). Temperature effects on germination of nine Amaranthus species. Weed Sci. 52: 217-21.
Sun, M. D. (2008). The good pasture of grassland improvement in Alpine region Festuca Sinensis Keng Cv Qinghai. Qinghai Prataculture.
Swanton, C. J., Shrestha, A., Knezevic, S. Z., Roy, R. C. and Ball-Coelho, B. R. (2000). Influence of tillage type on vertical weed seedbank distribution in a sandy soil. Canadian J. Plant Sci. 80: 455-57.
Taddia, L., D’Arca, D., Ferrari, S., Marraccini, C., Severi, L., Ponterini, G. and Costi, M. P. (2015). Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist. Updat. 23: 20-54.
Tang, W., Guo, H., Yin, J., Ding, X., Xu, X., Wang T., Yang, C., Xiong, W., Zhong, S., Tao, Q. and Sun, J. (2022). Germination ecology of Chenopodium album L. and implications for weed management. PLoS ONE.17:1-23. doi.org/10.1371/journal.pone.0276176.
Teasdale, J. R. and P. Pillai. (2005). Contribution of ammonium to stimulation of smooth pigweed (Amaranthus hybridus L.) germination by extracts of hairy vetch (Vicia villosa Roth) residue. Weed Biol. Manag. 5: 19–25. doi.org/10.1111/j.1445-6664.2005.00155.x. 
Tobe, K., Li, X. and Omasa, K. (2000). Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. persicum (Chenopodiaceae). Aust. J. Bot. 48: 455-60.
Torra, J., Royoesnal, A. and Recasens, J. (2016). Temperature and light requirements for germination and emergence of three arable Papaveraceae species. Weed Sci. 64: 248-60.
Traba, J., Azcárate, F. M. and Peco, B. (2004). From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci. Res. 14: 297–303. doi.org/ 10.1079/ssr2004179.
Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S. and Papastylianou, P. (2020). Key factors affecting weed seeds' germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2: 1-9.  doi: 10.3389/ fagro.2020.00001.
Trezzi, M. M. and Vidal, R. A. (2004). Potencial de utilização de cobertura vegetal de sorgo e milheto na supressão de plantas daninhas em condição de campo: II-Efeitos da cobertura morta. Planta Daninha. 22: 1-10.
 Wei, L., Zhang, C., Dong, Q., Yang, Z., Chu, H., Yu, Y. and Yang, X. (2020). Effects of temperature and water potential on seed germination of 13 Poa L. species in the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 25: doi.org/10.1016/j.gecco..e01442. 
Zheng, Y. R., Jiang, L. H., Gao, Y., Chen, X., Luo, G. P., Feng, X. W. and Shimizu, H. (2013). Persistence of four dominant psammo‐phyte species in central Inner Mongolia of China under continual drought. J. Arid Land 5: 331-39.
Zheng, Y., Xie, Z., Gao, Y., Yu, Y. and Shimizu, H. (2005). Influence of light, temperature, and water stress on germination of Hedysarum fruticosum. South Afr. J. Bot. 71: 167-72.

Global Footprints