Abdullahi, I. I., Abdullahi, N., Abdu, A. M. and Ibrahim, A. S. (2016). Proximate, mineral and vitamin analysis of fresh and canned tomato. Biosci. Biotechnol. Res. Asia. 13: 1163-69.
Aidoo, R., Danfoku, R. A. and Mensah, J. O. (2014). Determinants of postharvest losses in tomato production in the Offinso North district of Ghana. J. Dev. Agric. Econ. 6: 338-44.
Antunes, M. D., Rodrigues, D., Pantazis, V., Cavaco, A. M., Siomos, A. S. and Miguel, G. (2013). Nutritional quality changes of fresh-cut tomato during shelf life. Food Sci. Biotechnol. 22: 1-8.
Babalola, Y. T., Babalola, A. D. and Okhale, F. O. (2010). Awareness and accessibility of environmental information in Nigeria: Evidence from Delta State. Library Philosophy and Practice. pp.1.
Bader, N. R. (2011). Sample preparation for flame atomic absorption spectroscopy: An overview. Rasayan J. Chem. 4: 49-55.
Ceppy Nasahi, Aris Rizky Yusuf, Sri Hartati, Denny Kurniadie and Syifa Nabilah Subakti-Putri (2023). Yeast potential in controlling Aspergillus sp. causing fruit rot disease in dekopon oranges (Citrus reticulata ‘Shiranui’). Res. Crop. 24: 407-15.
Clements, A., Young, J. C., Constantinou, N. and Frankel, G. (2012). Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3: 71-87.
Erkmen, O. and Bozoglu, T. F. (2016). Food Microbiology: principles into practice. Vol 2. John Wiley & Sons, New Jersey, U.S.
Fish, W. W., Perkins-Veazie, P. and Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 15: 309-17.
Gil, M. and Wianowska, D. (2017). Chlorogenic acids–their properties, occurrence and analysis. Annales Universitatis Mariae Curie-Skłodowska, sectio AA–Chemia 72: 61.
GSA (2013). Ghana Standard Authority: Microbiological Analysis of Foods: Sampling and Microbiological Criteria (GS 955:2013. 2nd Edition).
Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I. and Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hortic. 127: 255-61.
Iniesta, M. D., Perez-Conesa, D., Garcia-Alonso, J., Ros, G. and Periago, M. J. (2009). Folate content in tomato (Lycopersicon esculentum). Influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. J. Agric. Food Chem. 57: 4739-45.
Kothe, E. J., Ling, M., North, M., Klas, A., Mullan, B. A. and Novoradovskaya, L. (2019). Protection motivation theory and pro‐environmental behaviour: A systematic mapping review. Aust. J. Psychol. 71: 411-32.
Kumar, K. S., Paswan, S. and Srivastava, S. (2012). Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem. 1: 33-43.
Martí, R., Leiva-Brondo, M., Lahoz, I., Campillo, C., Cebolla-Cornejo, J. and Roselló, S. (2018). Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 239: 148-56.
Mehrnoush, A. (2023). Molecular characterization of Penicillium using ITS rDNA isolated from tomato in Limpopo Province, South Africa. Res. Crop. 24: 575-78.
Miedes, E. and Lorences, E. P. (2004). Apple (Malus domestica) and tomato (Lycopersicum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. J. Agric. Food Chem. 52: 7957-63.
Mohammed, S. M., Abdurrahman, A. A. and Attahiru, M. (2017). Proximate analysis and total lycope.ne content of some tomato cultivars obtained from Kano State, Nigeria. ChemSearch J. 8: 64-69.
Obeng, F. A., Gyasi, P. B., Olu-Taiwo, M. and Ayeh-Kumi, F. P. (2018). Microbial assessment of tomatoes (Lycopersicon esculentum) sold at some central markets in Ghana. Biomed Res. Int. 8: doi.org/10.1155/2018/6743826.
Ogwu, M. C. (2019). Effects of storage methods and duration on the microbial composition and load of tomato (Solanum lycopersicum [L.], Solanaceae) fruits. BEU J. Sci. Technol. 9: 1-7.
Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K. and Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) under ambient conditions. Pak. J. Bot. 44: 667-70.
Sanyaolu, A. A. A. (2016). Postharvest fungal deterioration of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annum L): The “ESA” connection. Sci. World J. 11: 1-10.
Singh, A., Singh, D. and Singh, R. (2016). Shelf-life extension of tomatoes by gamma radiation. Rad. Sci. Tech. 2: 17-24.
Sohail, M., Ayub, M., Ahmad, I., Ali, B. and Dad, F. (2011). Physicochemical and microbiological evaluation of sun-dried tomatoes in comparison with fresh tomatoes. Pak. J. Biochem. Biotechnol. 44: 106-09.
Upadhyaya, P., Tyagi, K., Sarma, S., Tamboli, V., Sreelakshmi, Y. and Sharma, R. (2017). Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chem. 217: 610-19.
Aidoo, R., Danfoku, R. A. and Mensah, J. O. (2014). Determinants of postharvest losses in tomato production in the Offinso North district of Ghana. J. Dev. Agric. Econ. 6: 338-44.
Antunes, M. D., Rodrigues, D., Pantazis, V., Cavaco, A. M., Siomos, A. S. and Miguel, G. (2013). Nutritional quality changes of fresh-cut tomato during shelf life. Food Sci. Biotechnol. 22: 1-8.
Babalola, Y. T., Babalola, A. D. and Okhale, F. O. (2010). Awareness and accessibility of environmental information in Nigeria: Evidence from Delta State. Library Philosophy and Practice. pp.1.
Bader, N. R. (2011). Sample preparation for flame atomic absorption spectroscopy: An overview. Rasayan J. Chem. 4: 49-55.
Ceppy Nasahi, Aris Rizky Yusuf, Sri Hartati, Denny Kurniadie and Syifa Nabilah Subakti-Putri (2023). Yeast potential in controlling Aspergillus sp. causing fruit rot disease in dekopon oranges (Citrus reticulata ‘Shiranui’). Res. Crop. 24: 407-15.
Clements, A., Young, J. C., Constantinou, N. and Frankel, G. (2012). Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3: 71-87.
Erkmen, O. and Bozoglu, T. F. (2016). Food Microbiology: principles into practice. Vol 2. John Wiley & Sons, New Jersey, U.S.
Fish, W. W., Perkins-Veazie, P. and Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 15: 309-17.
Gil, M. and Wianowska, D. (2017). Chlorogenic acids–their properties, occurrence and analysis. Annales Universitatis Mariae Curie-Skłodowska, sectio AA–Chemia 72: 61.
GSA (2013). Ghana Standard Authority: Microbiological Analysis of Foods: Sampling and Microbiological Criteria (GS 955:2013. 2nd Edition).
Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I. and Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hortic. 127: 255-61.
Iniesta, M. D., Perez-Conesa, D., Garcia-Alonso, J., Ros, G. and Periago, M. J. (2009). Folate content in tomato (Lycopersicon esculentum). Influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. J. Agric. Food Chem. 57: 4739-45.
Kothe, E. J., Ling, M., North, M., Klas, A., Mullan, B. A. and Novoradovskaya, L. (2019). Protection motivation theory and pro‐environmental behaviour: A systematic mapping review. Aust. J. Psychol. 71: 411-32.
Kumar, K. S., Paswan, S. and Srivastava, S. (2012). Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem. 1: 33-43.
Martí, R., Leiva-Brondo, M., Lahoz, I., Campillo, C., Cebolla-Cornejo, J. and Roselló, S. (2018). Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 239: 148-56.
Mehrnoush, A. (2023). Molecular characterization of Penicillium using ITS rDNA isolated from tomato in Limpopo Province, South Africa. Res. Crop. 24: 575-78.
Miedes, E. and Lorences, E. P. (2004). Apple (Malus domestica) and tomato (Lycopersicum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. J. Agric. Food Chem. 52: 7957-63.
Mohammed, S. M., Abdurrahman, A. A. and Attahiru, M. (2017). Proximate analysis and total lycope.ne content of some tomato cultivars obtained from Kano State, Nigeria. ChemSearch J. 8: 64-69.
Obeng, F. A., Gyasi, P. B., Olu-Taiwo, M. and Ayeh-Kumi, F. P. (2018). Microbial assessment of tomatoes (Lycopersicon esculentum) sold at some central markets in Ghana. Biomed Res. Int. 8: doi.org/10.1155/2018/6743826.
Ogwu, M. C. (2019). Effects of storage methods and duration on the microbial composition and load of tomato (Solanum lycopersicum [L.], Solanaceae) fruits. BEU J. Sci. Technol. 9: 1-7.
Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K. and Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) under ambient conditions. Pak. J. Bot. 44: 667-70.
Sanyaolu, A. A. A. (2016). Postharvest fungal deterioration of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annum L): The “ESA” connection. Sci. World J. 11: 1-10.
Singh, A., Singh, D. and Singh, R. (2016). Shelf-life extension of tomatoes by gamma radiation. Rad. Sci. Tech. 2: 17-24.
Sohail, M., Ayub, M., Ahmad, I., Ali, B. and Dad, F. (2011). Physicochemical and microbiological evaluation of sun-dried tomatoes in comparison with fresh tomatoes. Pak. J. Biochem. Biotechnol. 44: 106-09.
Upadhyaya, P., Tyagi, K., Sarma, S., Tamboli, V., Sreelakshmi, Y. and Sharma, R. (2017). Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chem. 217: 610-19.