Loading...

A comparative study on phytochemical, nutritional and microbial load of fresh and spoiled tomatoes (Lycopersicon esculentum L.)


Citation :- A comparative study on phytochemical, nutritional and microbial load of fresh and spoiled tomatoes (Lycopersicon esculentum L.). Res. Crop. 24: 727-736
LORETTA ODURO, JOSHUA ALLOTEI ALLOTEY, YAW GYAU AKYEREKO, FAUSTINA DUFIE WIREKO-MANU AND JOSEPH O. AKOWUAH fdbaah@yahoo.com
Address : Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

Most Ghanaians preferably consume spoiled tomatoes due to their inexpensiveness, however, the nutritional content and health implications associated with tomato spoilage remain unknown. This study compared the nutritional and phytochemical composition, and the microbial safety of fresh and spoiled tomatoes from the Ghanaian market using standard analytical protocols. The study results revealed considerably higher levels of crude fibre (3.54%), potassium (140.80 mg/100g), and folic acid (0.07 mg/100g) in spoiled tomatoes when compared with fresh tomato samples which recorded corresponding amounts as 0.81%, 88.88 mg/100g and 0.04 mg/100g, except for moisture and Vitamin C which were otherwise. Also, phytochemicals including lycopene, beta-carotene and chlorogenic acid were 58.33, 57.05 and 1.17 mg/100g, respectively higher in spoiled tomatoes than the fresh samples. Nonetheless, microbial loads in spoiled tomatoes were very high with Total Viable Count (TVC) ranging from 3.31 to 5.52 Log10 CFU/mL and similarly unacceptable values for Total Coliform Count (TCC) and Escherichia coli, while yeast and moulds were too numerous to count (TNC). Although, the nutritional content of tomato samples in a state of senescence were observed as high, this study clearly showed that the high level of microbial contaminants recorded from the spoiled tomatoes make it unsafe for human consumption. Further studies could be conducted to investigate the impact of cooking methods on the spoiled tomatoes.

Keywords

Microbial load nutritional content phytochemicals tomato

References

Abdullahi, I. I., Abdullahi, N., Abdu, A. M. and Ibrahim, A. S. (2016). Proximate, mineral and vitamin analysis of fresh and canned tomato. Biosci. Biotechnol. Res. Asia13: 1163-69.
Aidoo, R., Danfoku, R. A. and Mensah, J. O. (2014). Determinants of postharvest losses in tomato production in the Offinso North district of Ghana. J. Dev. Agric. Econ6: 338-44.
Antunes, M. D., Rodrigues, D., Pantazis, V., Cavaco, A. M., Siomos, A. S. and Miguel, G. (2013). Nutritional quality changes of fresh-cut tomato during shelf life. Food Sci. Biotechnol22: 1-8.
Babalola, Y. T., Babalola, A. D. and Okhale, F. O. (2010). Awareness and accessibility of environmental information in Nigeria: Evidence from Delta State. Library Philosophy and Practice. pp.1.
Bader, N. R. (2011). Sample preparation for flame atomic absorption spectroscopy: An overview. Rasayan J. Chem4: 49-55.
Ceppy Nasahi, Aris Rizky Yusuf, Sri Hartati, Denny Kurniadie and Syifa Nabilah Subakti-Putri (2023). Yeast potential in controlling Aspergillus sp. causing fruit rot disease in dekopon oranges (Citrus reticulata ‘Shiranui’). Res. Crop. 24: 407-15.
Clements, A., Young, J. C., Constantinou, N. and Frankel, G. (2012). Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3: 71-87.
Erkmen, O. and Bozoglu, T. F. (2016). Food Microbiology: principles into practice. Vol 2. John Wiley & Sons, New Jersey, U.S.
Fish, W. W., Perkins-Veazie, P. and Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal15: 309-17.
Gil, M. and Wianowska, D. (2017). Chlorogenic acids–their properties, occurrence and analysis. Annales Universitatis Mariae Curie-Skłodowska, sectio AA–Chemia 72: 61.
GSA (2013). Ghana Standard Authority: Microbiological Analysis of Foods: Sampling and Microbiological Criteria (GS 955:2013. 2nd Edition).
Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I. and Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hortic127: 255-61.
Iniesta, M. D., Perez-Conesa, D., Garcia-Alonso, J., Ros, G. and Periago, M. J. (2009). Folate content in tomato (Lycopersicon esculentum). Influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. J. Agric. Food Chem57: 4739-45.
Kothe, E. J., Ling, M., North, M., Klas, A., Mullan, B. A. and Novoradovskaya, L. (2019). Protection motivation theory and pro‐environmental behaviour: A systematic mapping review. Aust. J. Psychol. 71: 411-32.
Kumar, K. S., Paswan, S. and Srivastava, S. (2012). Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem1: 33-43.
Martí, R., Leiva-Brondo, M., Lahoz, I., Campillo, C., Cebolla-Cornejo, J. and Roselló, S. (2018). Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem239: 148-56.
Mehrnoush, A. (2023). Molecular characterization of Penicillium using ITS rDNA isolated from tomato in Limpopo Province, South Africa. Res. Crop. 24: 575-78.
Miedes, E. and Lorences, E. P. (2004). Apple (Malus domestica) and tomato (Lycopersicum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. J. Agric. Food Chem. 52: 7957-63.
Mohammed, S. M., Abdurrahman, A. A. and Attahiru, M. (2017). Proximate analysis and total lycope.ne content of some tomato cultivars obtained from Kano State, Nigeria. ChemSearch J8: 64-69.
Obeng, F. A., Gyasi, P. B., Olu-Taiwo, M. and Ayeh-Kumi, F. P. (2018). Microbial assessment of tomatoes (Lycopersicon esculentum) sold at some central markets in Ghana. Biomed Res. Int. 8: doi.org/10.1155/2018/6743826.
Ogwu, M. C. (2019). Effects of storage methods and duration on the microbial composition and load of tomato (Solanum lycopersicum [L.], Solanaceae) fruits. BEU J. Sci. Technol. 9: 1-7.
Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K. and Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) under ambient conditions. Pak. J. Bot. 44: 667-70.
Sanyaolu, A. A. A. (2016). Postharvest fungal deterioration of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annum L): The “ESA” connection. Sci. World J. 11: 1-10.
Singh, A., Singh, D. and Singh, R. (2016). Shelf-life extension of tomatoes by gamma radiation. Rad. Sci. Tech2: 17-24.
Sohail, M., Ayub, M., Ahmad, I., Ali, B. and Dad, F. (2011). Physicochemical and microbiological evaluation of sun-dried tomatoes in comparison with fresh tomatoes. Pak. J. Biochem. Biotechnol. 44: 106-09.
Upadhyaya, P., Tyagi, K., Sarma, S., Tamboli, V., Sreelakshmi, Y. and Sharma, R. (2017). Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chem217: 610-19.

Global Footprints