Loading...

Identification and evaluation of potential beef tomato elders for the crossing material of NIL-Sletr1-2


Citation :- Identification and evaluation of potential beef tomato elders for the crossing material of NIL-Sletr1-2. Res. Crop. 24: 737-743
G. WIGUNA, S. MUBAROK, A. NURAINI, E. SUMINAR AND A. ZAELANI gung001@brin.go.id
Address : Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Indonesia
Submitted Date : 19-10-2023
Accepted Date : 6-12-2023

Abstract

The beef tomato is one of the most popular and valuable tomato fruits in Indonesia. Because of this tomato consumed as fresh fruit, therefore one of the problems is fruit shelf life. Generating new cultivar with longest fruit shelf life will be a challenge such as by the crossing with NIL-Sletr1-2. A NIL Sletr1-2 line has been established in order to address this issue. However, they have never been used as breeding materials to improve the shelf life of beef tomatoes, particularly in Indonesia. The study aims to identify potential beef tomato varieties for hybridization with NIL-Sletr1-2, with an emphasis on ease of emasculation, cross-success rates, and the potential for hybrid seed production. The study was conducted in Lembang, Indonesia, at an altitude of 1250 meters above sea level, from February to September 2023. In this study, five homozygous beef tomato cultivars were crossed with the NIL strain Sletr1-2 with four replications. The results showed that hybridizing beef tomato cultivars with NIL-Sletr1-2 strains for long-shelf-life beef tomato hybrids was influenced by genetic factors. The insensitivity of NIL-Sletr1-2 strains to ethylene had a negative effect on the production of pollen. ‘Roloise’, ‘Mortgage’, and ‘Costoluto’ cultivars have high seed yield potential and are suitable for crossbreeding with NIL-Sletr1-2 strains to produce hybrid seeds.

Keywords

Allele introgressions beef tomato ethylene insensitive hybridization shelf-life

References

Acquaah, G. (2012). Principles of Plant Genetics and Breeding, 2nd edn. Blackwell Publishing Ltd, Victoria. pp. 740. Doi:10.1002/9781118313718.
Ali, Q., Kurubas, M. S. and Erkan, M. (2021). Comparison of ethylene sensitivity of three tomato cultivars from different tomato types and effects of ethylene on postharvest performance. Tarim Bilimleri Dergisi. 27: 476-83.  Doi:10.15832/ankubtd.715171.
Aminisarteshnizi, M. (2023). Molecular characterization of Penicillium using ITS rDNA isolated from tomato in Limpopo Province, South Africa. Res. Crop. 24: 575-78.
Amr, A. and Raie, W. (2022). Tomato componentts and quality parameters. A review. Jordan Journal of Agricultural Sciences. 18: 199-220. doi:10.35516/jjas.v18i3.444.
An, J., Althiab Almasaud, R., Bouzayen, M., Zouine, M. and Chervin, C. (2020). Auxin and ethylene regulation of fruit set. Plant Science. 292: doi.10.1016/j.plantsci.2019.110381.
Animasaun, D., Oyedeji, S. and Adewuyi Azeez, M. (2015). Evaluation of growth and pollen viability in relation to fruit set among five varieties of tomato grown in Nigeria. Agron J. 76: 203-18.
Bergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnol Adv. 32: 170-89. doi.10.1016/j.biotechadv.2013.11.003.
Bhowmik, D., Kumar, K. P. S., Paswan, S. and Srivastava, S. (2012). Tomato - a natural medicine and its health benefits. Phytojournal. 1: 33-43.
Carrizo García, C. (2011). Fruit characteristics, seed production and pollen tube growth in the wild chilli pepper capsicum flexuosum. Flora: Morphology, Distribution, Functional Ecology of Plants. 206: 334-40. Doi:10.1016/j.flora.2010.05.008.
Colombo, N. and Galmarini, C. R. (2017). The use of genetic, manual and chemical methods to control pollination in vegetable hybrid seed production: a review. Plant Breeding. 136(3): 287-99.  doi:10.1111/PBR.12473.
Cvikic, D., Zdravkovic, J., Pavlovic, N., Adzic, S. and Djordjevic, M. (2012). Postharvest shelf life of tomato (Lycopersicon esculentum Mill) mutants (nor and rin) and their hybrids. Genetika. 44: 449-56. doi:10.2298/GENSR1203449C.         
Deng, L., Wang, T., Hu, J., Yang, X., Yao, Y., Jin, Z., Huang, Z., Sun, G., Xiong, B., Liao, L. and Wang, Z. (2022). Effects of pollen sources on fruit set and fruit characteristics of ‘Fengtangli’ plum (Prunus salicina Lindl.), based on microscopic and transcriptomic analysis. Int. J. Mol. Sci. 23.  doi:10.3390/ijms232112959.
Díez, M. J. and Nuez, F. (2006). Tomato. In: Vegetables II: Fabaceae, Liliaceae, Solanaceae and Umbelliferae (Eds. Prohens, J., Nuez, F. and Carena, M. J.). Springer, New York. pp. 249-23.
Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V. and Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 51: 609–17. doi:10.1002/mnfr.200600158.
Garg, N. and Cheema, D. S. (2008). Genotype × environment interactions for shelf life and yield attributes in tomato hybrids heterozygous at rin, nor, or alc loci. J. Crop Improv. 22: 17–30. doi:10.1080/15427520802042697.
Grandillo, S., Termolino, P. and Knaap, E. van der (2012). Molecular Mapping of Complex Traits in Tomato. In: genetics, genomics and breeding of tomato (Eds. In Liedl, B. E., Labate, J. A., Stommel, J. R., Slade, A. and Kole, C.). Taylor and Francis Group, U.S. pp. 150-213.
Groot, S. P. C., Keizer, L. C. P., De Ruiter, W. and Dons, J. J. M. (1994). Seed and fruit set of the lateral suppressor mutant of tomato. Sci. Hortic. 59: 157-62.
Khan, M. A., Butt, S. J., Khan, K. A., Nadeem, F., Yousaf, B. and Javed, H. U. (2017). Morphological and physico-biochemical characterization of various tomato cultivars in a simplified soilless media. Annals of Agricultural Sciences. 62: 139-43.  doi:10.1016/j.aoas.2017.10.001.
Matas, A. J., Gapper, N. E., Chung, M. Y. Y., Giovannoni, J. J. and Rose, J. K. C. (2009). Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr. Opin. Biotechnol. 20: 197-203.  doi:10.1016/j.aoas.2017.10.001.
Mubarok, S., Okabe, Y., Fukuda, N., Ariizumi, T. and Ezura, H. (2015). Potential use of a weak ethylene receptor mutant, Sletr1-2, as breeding material to extend fruit shelf life of tomato. J. Agric. Food Chem. 63: 7995–8007. doi:10.1021/acs.jafc.5b02742
Mubarok, S., Okabe, Y., Fukuda, N., Ariizumi, T. and Ezura, H. (2016). Favourable effects of the weak ethylene receptor mutation Sletr1-2 on postharvest fruit quality changes in tomatoes. Postharvest Biol. Technol. 120: 1–9. doi:10.1016/j.harvbio.2016.04.022. 
Mubarok, S., Ezura, H., Anas, Kusumiyati, Rostini, N., Suminar, E. and Wiguna, G. (2019). Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes. J. Integr. Agric. 18: 1170-76. doi:10.1016/S2095-3119(19)62614-6.
Mutschler, M. A., Wolfe, D. W., Cobb, E. D. and Yourstone, K. S. (1992). Tomato fruit quality and shelf life in hybrids heterozygous for the alc ripening mutant. Hort. Sci. 27: 352-55.  doi: 10.21273/hortsci.27.4.352.
Okabe, Y., Ariizumi, T. and Ezura, H. (2013). Updating the micro-tom tilling platform. Breed. Sci. 63: 42–48. doi: 10.1270/jsbbs.63.42.
Pech, J. C., Bouzayen, M. and Latché, A. (2008). Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114-20. doi: 10.1016/j.plantsci.2008.01.003.
Saraswati, N., Murniati, K. and Nugraha, A. (2021). Pola kemitraan dan pendapatan usahatani tomat beef di serenity farm. J. Food Syst. Agribusiness 5: 116-25. doi: 10.25181/jofsa.v5i2.1726.
Sawhney, V. K. (2004). Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J. Hort. Sci. Biotechnol.    79: 138-141. doi: 0.1080/ 14620316.2004.11511726.
Soares, N. D. C. P., De Barros Elias, M., MacHado, C. L., Trindade, B. B., Borojevic, R. and Teodoro, A. J. (2019). Comparative analysis of lycopene content from different tomato-based food products on the cellular activity of prostate cancer cell lines. Foods 8: doi: 10.3390/foods8060201.
Sugiarti, L., Mubarok, S., Kusumiyati, dan,Raya Bandung-Sumedang Km, J. and Artikel, I. (2021). Pengaruh Kombinasi Konsentrasi 1-Methylcyclopropene dan Asam Askorbat terhadap Kualitas Ketahanan Simpan Pascapanen Buah Tomat Beef ‘Valoasis RZ’. Jurnal Agrikultura. 23: 1–6.
Tobe, O. K., Atala, T. K., Saddiq, N. M. and Damisa, M. (2023). Factors influencing the adoption of improved tomato post-harvest loss management practices among farmers in north-west zone of Nigeria. Farm. Manage. 8: 36-43.
Urrutia, M., Bonet, J., Arús, P. and Monfort, A. (2015). A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters. Theor. Appl. Genet. 128: 1261-75. doi: 10.1007/s00122-015-2503-3.
Wiguna, G., Damayanti, F., Mubarok, S., Ezura, H. and ANAS, A. (2021). Genetic control of fruit shelf life and yield in crossbreeding of Sletr1-2 mutant with Indonesian tropical tomatoes. Biodiversitas. 22: 4671-75. doi: 10.13057/biodiv/d221060.
Yahaya, M. A., Shimelis, H., Laing, M., Mohammed, M. S. and Mathew, I. (2020). Methodologies for hybridization in predominantly self-pollinating crops: a review. J. Crop Improv. 34: 268-89.  doi: 10.1080/15427528.2019.1698483.

Global Footprints