Loading...

Cultivating sustainability: A comprehensive review on intercropping in a changing climate


Citation :- Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Res. Crop. 24: 702-715
SAGAR MAITRA, UPASANA SAHOO, MASINA SAIRAM, HARUN I. GITARI, ESMAEIL REZAEI-CHIYANEH, MARTIN LEONARDO BATTAGLIA AND AKBAR HOSSAIN5 sairam.masina@cutm.ac.in
Address : Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha-761211, India
Submitted Date : 20-09-2023
Accepted Date : 20-10-2023

Abstract

The intercropping system is known for its multifaceted benefits; however, it has been mostly evaluated to quantify yield, land resource use efficiency and monetary gains. There are several underlying advantages relevant in the present context of global warming and climate change. Intercropping systems have the potential to ensure the regulation of climatic factors, efficient soil moisture utilization, maximum use of solar radiation, reduced greenhouse gas emission, more carbon sequestration and greater ecosystem services. These beneficial aspects of intercropping system have been revisited in the article. In recent times, as per the recommendation of the United Nations (UN), a major emphasis has been placed on the agricultural production systems to attain the Sustainable Development Goals (SDGs), while the intercropping system is the environmentally friendly and cost-effective cropping system that can address three SDGs such as zero hunger (SDG-2), climate action (SDG-13) and life on land (SDG-15). The present article focuses on the prospects of intercropping systems to meet the food security of the increasing population in the modern era of the changing climate. 

Keywords

Climate Change efficient resource utilization green house gas emission intercropping system sustainable development goal

References

Abagandura, G., Sekaran, U., Singh, S., Singh, J., Ibrahim, M., Subramanian, S., Owens, V. and Kumar, S., (2020). Intercropping Kura clover with prairie cordgrass mitigates soil greenhouse gas fluxes. Sci. Rep. 10: 1–11.
Ahmed, S., Raza, M. A., Zhou, T., Hussain, S., Khalid, M. H. B., Feng, L., Wasaya, A., Iqbal, N., Ahmed, A. and Liu, W. (2018). Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize. Agronomy 8: doi.org/10.3390/agronomy8120282.
Altieri, M. A. and Nicholls, C. I. (2017) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140: 33–45.
Bambalele, N. L. (2016). Evaluating water use efficiency of maize in different intercropping systems with legumes, Doctoral dissertation, University of KwaZulu-Natal, Pietermaritzburg, South Africa. Retrieved from: https://api.semanticscholar.org/ CorpusID:56090343, accessed on 29 August 2023.
Bayala, J. and Prieto, I. (2020). Water acquisition, sharing and redistribution by roots: applications to agroforestry systems. Plant Soil 453: 17-28.
Bedoussac, L., Journet, E. P., Hauggaard-Nielsen. H., Naudin, C., Corre-Hellou, G., Jensen, E.S., Prieur, L. and Justes, E. (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A Review. Agron. Sustain. Dev. 35: 911-35.
Begna, S., Angadi, S., Mesbah, A., Umesh, M. and Stamm, M. (2021) Forage yield and quality of winter canola–pea mixed cropping system. Sustainability 13: doi.org/10.3390/ su13042122.
Bhadra, P., Maitra, S., Shankar, T., Hossain, A., Praharaj, S. and Aftab, T. (2022). Climate change impact on plants: Plant responses and adaptations. In: Plant Perspectives to Global Climate Changes (Eds. Aftab, T. and Roychoudhury, A.), Elsevier Inc., Academic Press. pp.1–24.
Bhattacharya, U., Naskar, M. K., Venugopalan, V. K., Sarkar, S., Bandopadhyay, P., Maitra, S., Gaber, A., Alsuhaibani, A. M. and Hossain, A. (2023). Implications of minimum tillage and integrated nutrient management on yield and soil health of rice-lentil cropping system – being a resource conservation technology. Front. Sust. Food Syst. 7: doi.org/ 10.3389/fsufs.2023.1225986.
Billah, M., Aktar, S., Brestic, M., Zivcak, M., Khaldun, A. B. M., Uddin, M. S., Bagum, S. A., Yang, X., Skalicky, M., Mehari, T. G., Maitra, S. and Hossain, A. (2021). Progressive genomic approaches to explore drought-and salt-induced oxidative stress responses in plants under changing climate. Plants 10: doi.org/10.3390/plants10091910.
Boinot, S., Fried, G., Storkey, J., Metcalfe, H., Barkaoui, K., Lauri, P. and Mézière, D. (2019) Alley cropping agroforestry systems: reservoirs for weeds or refugia for plant diversity? Agr. Ecosyst. Environ. 284: doi: 10.1016/j.agee.2019.106584.
Borden, K., Thomas, S. and Isaac, M. (2017). Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant Soil 410: 323-34.
Braat, L. C. and De Groot, R. (2012). The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 1: 4–15.
Burgess, A. J., Cano, M. E. C. and Parkes, B. (2022). The deployment of intercropping and agroforestry as adaptation to climate change. Crop Environ. 1: 145-60.
Chai, Q., Qin, A., Gan, Y. and Yu, A. (2014). Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 34: 535-43.
Chappa, L. R., Mugwe, J., Maitra, S. and Gitari, H. I. (2022). Current status, and prospects of improving sunflower production in Tanzania through intercropping with Sunnhemp. Int. J. Bioresour. Sci. 9: 1 ̶ 8.
Chiyaneh, S. F., Rezaei-Chiyaneh, E., Amirnia, R., Afshar, R. K., Siddique, K. H. M. (2023) Intercropping medicinal plants is a new idea for forage production: A case study with ajowan and fenugreek. Food Energy Secur. 2023: doi.org/10.1002/fes3.501.
Coble, A., Contosta, A., Smith, R., Siegert, N., Vadeboncoeur, M., Jennings, K., Stewart, A. and Asbjornsen, H. (2020). Influence of forest-to-silvopasture conversion and drought on components of evapotranspiration. Agric. Ecosyst. Environ. 295: doi:10.1016/j.agee. 2020.106916.
Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P. and Wang, L. (2020). Ecosystem service provision of grain legume and cereal intercropping in Africa. Agric. Syst. 178: doi:10.1016/j.agsy.2019.102761.
Elahi, E., Khalid, Z., Tauni, M. Z., Zhang, H. and Lirong, X. (2022). Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation, 117: doi.10.1016/j.technovation.2021.102255.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I.F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Adriaan J. Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y. and Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Global Environ. Change 43: 51 ̶ 61.
Fan, Y., Chen, J., Cheng, Y., Raza, M. A., Wu, X., Wang, Z., Liu, Q., Wang, R., Wang, X, Yong, T., Liu, W, Liu, J., Du, J, Shu, K., Yang, W. and Yang, F. (2018). Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE 13: doi:10.1371/ journal.pone.0198159.
Fan, Y., Wang, Z., Liao, D., Raza, M. A., Wang, B., Zhang, J., Chen, J., Feng, L., Wu, X., Liu, C. and Yang, W. (2020). Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Sci. Rep. 10: doi.org/10.1038/s41598-020-66459-y.
FAO (2015). Climate change and food security: risks and responses. Available online: https://www.fao.org/3/i5188e/I5188E.pdf, accessed on: 29 August 2023.
FAO (2019). The state of food security and nutrition in the world. Safeguarding against economic slowdowns and downturns, p.239. Available online: https://www.fao.org/3/ ca5162en/ca5162en.pdf, accessed on: 10 September 2023.
Feng, L., Raza, M. A., Li, Z., Chen, Y., Khalid, M. H. B., Du, J., Liu, W., Wu, X., Song, C. and Yu, L. (2019). The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 9: doi.org/ 10.3389/fpls.2018.01952.
Gaikwad, D. J., Ubale, N. B., Pal, A., Singh, S., Ali, M. A. and Maitra, S. (2022). Abiotic stresses impact on major cereals and adaptation options - A review. Res. Crop. 23: 896 ̶ 915.
Gao, J. and Xie, H. (2023) Daylily intercropping: Effects on soil nutrients, enzyme activities, and microbial community structure. Front. Plant Sci14: doi.org/10.3389/ fpls.2023.1107690.
Gao, W., Duan, A., Qiu, X., Sun, J., Zhang, J., Liu, H. and Wang, H. (2010). Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron. J. 102: 1149-57.
Gebru, H. (2015). A Review on the comparative advantage of intercropping systems. J. Biol. Agric. Healthcare 5: 28-38.
Ghanbari, A., Dahmardeh, M., Siahsar, B. A. and Ramroudi, M. (2010). Effect of maize (Zea mays L.) - cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in an environment. J. Food. Agric. Environ. 8: 102-08.
Gitari, H. I.; Nyawade, S.O., Kamau, S., Karanja, N. N., Gachene, C. K. K., Raza, M. A., Maitra, S. and Schulte-Geldermann, E. (2020). Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 258: doi.org/ 10.1016/j.fcr.2020.107957.
Grossiord, C., Buckley, T., Cernusak, L., Novick, K., Poulter, B., Siegwolf, R., Sperry, J. and McDowell, N. (2020). Plant responses to rising vapor pressure deficit. New Phytol. 226: 1550-66.
Hossain, A., Maitra, S., Pramanick, B., Bhutia, K. L., Ahmad, Z., Moulick, D., Abu Syed, M., Shankar, T., Adeel, M., Hassan, M.M. and Aftab, T. (2021). Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In: Plant Perspectives to Global Climate Changes (Eds. Aftab, T., Roychoudhury, A.), Elsevier Inc., Academic Press. pp. 471-518.
Hu, F., Feng, F., Zhao, C., Chai, Q., Yu, A., Yin, W. and Gan, Y. (2017). Integration of wheat- maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Tillage Res. 169: 44–53.
Huss, C. P., Holmes, K. D. and Blubaugh, C. K. (2022). Benefits and risks of intercropping for crop resilience and pest management. J. Econ. Entomol. 115: 1350-62.
IPCC (2019). IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Available at: https://www.ipcc.ch/site/assets/uploads/sites/4/2021 /07/210714-IPCCJ72.
Jena, J., Maitra, S., Hossain, A., Pramanick, B., Gitari, H. I., Praharaj, S., Shankar, T., Palai, J. B., Rathore, A., Mandal, T. K. and Jatav, H. S. (2022). Role of legumes in cropping systems for soil ecosystem improvement. In: Ecosystem Services: Types, Management and Benefits (Ed. Jatav, H.S.). Nova Science Publishers, Inc. pp.1 ̶ 21.
Li, C.,  Stomph, T. J.,  Makowski, D. and van der Werf, W. (2023). The productive performance of intercropping. PANS 120: doi:10.1073/pnas.2201886120.
Li, S. and Wu, F. (2018). Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. 9: doi.org/10.3389/ fmicb.2018.01521.
Lynch, J., Cain, M., Frame, D. and Pierrehumbert, R. (2021) Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil co2-emitting sectors. Front. Sustain. Food Syst., 4: doi.org/10.3389/fsufs.2020.518039.
Maitra, S. (2018). Role of intercropping system in agricultural sustainability. Centurion J. Multidisc. Res. 8: 77-90.
Maitra, S. (2020). Intercropping of small millets for agricultural sustainability in dry lands: A review. Crop Res. 55: 162-71.
Maitra, S. and Gitari, H.I. (2020). Scope for adoption of intercropping system in organic agriculture. Indian J. Nat. Sci. 11: 28624-31.
Maitra, S. and Ray, D. P. (2019). Enrichment of biodiversity, influence in microbial population dynamics of soil and nutrient utilization in cereal-legume intercropping systems: A Review. Int. J. Bioresour. Sci. 6: 11-19.
Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S. and Sairam, M. (2021b). Intercropping–A low input agricultural strategy for food and environmental security. Agronomy 11: doi.org/10.3390/agronomy11020343.
Maitra, S., Mondal, T., Hossain, A., Kalasare, R. S., Praharaj, S., Mundonayil Joy, J. M., Shankar, T., Pramanick, B., Battaglia, M. L., Bhattacharya, U., Zupanič, M., and Sairam, M. (2023a). Impact of climate change on growth and productivity of major field crops. In: Response of field crops to abiotic stress, current status and future prospects (Eds. Choudhury, S. and Moulick, D.). CRC Press. pp. 217-26.
Maitra, S., Palai, J. B., Manasa, P. and Kumar, D. P. (2019). Potential of intercropping system in sustaining crop productivity. Int. J. Environ. Agric. Biotechnol. 12: 39-45.
Maitra, S., Praharaj, S., Brestic, M., Sahoo, R. K., Sagar, L., Shankar, T., Palai, J. B., Sahoo, U., Sairam, M., Pramanick, B., Nath, S., Venugopalan, V. K., Skalický, M. and Hossain, A. (2023b). Rhizobium as biotechnological tools for green solutions: An environment-friendly approach for sustainable crop production in the modern era of climate change. Curr. Microbiol80: doi.org/10.1007/s00284-023-03317-w.
Maitra, S., Praharaj, S., Hossain, A., Patro, T. S. S. K., Pramanick, B., Shankar, T., Pudake, R. N., Gitari, H. I., Palai, J. B., Sairam, M., Sagar, L. and Sahoo, U. (2022). Small millets: The next-generation smart crops in the modern era of climate change. In: Omics of Climate Resilient Small Millets (Eds. Pukade, R.N., Solanke, A.U., Sevanthi, A.M., Rajendrakumar, P.). Springer Nature. pp.1-25.
Maitra, S., Pramanick, B., Dey, P., Bhadra, P., Shankar, T. and K. Anand. (2021a.) Thermotolerant Soil Microbes and their role in mitigation of heat stress in plants. In: Soil Microbiomes for Sustainable Agriculture (Eds. Yadav, A. N.). Springer Cham. pp. 203-42.
Malhi, G. S., Kaur, M. and Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13: doi.org/10.3390/su13031318.
Manasa, P., Maitra S. and Reddy M. D. (2018). Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int. J. Manage. Technol. Eng. 8: 2871-75.
Manasa, P., Maitra, S. and Barman, S. (2020). Yield attributes, yield, competitive ability and economics of summer maize-legume intercropping system. Int. J. Environ. Agric. Biotechol. 13: 33-38.
Mariotti, M., Masoni, A., Ercoli, L. and Arduini, I. (2015). Nitrogen leaching and residual effect of barley/field bean intercropping. Plant Soil Environ. 61: 60-65.
Meisam Zargar, Nazih Rebouh, Elena Pakina, Anvar Gadzhikurbanov, Marina Lyashko and Bashir Ortskhanov (2017). Impact of climate change on cereal production in the highlands of eastern Algeria. Research on Crops 18: 575-82.
Menegat, S., Ledo, A. and Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12: doi:10.1038/s41598-022-18773-w.
Midya, A., Saren, B.K., Dey, J.K., Maitra, S., Praharaj, S., Gaikwad, D.J., Gaber, A., Alhomrani, M. and Hossain, A. (2021). Crop establishment methods and integrated nutrient management improve: Part II. nutrient uptake and use efficiency and soil health in rice (Oryza sativa L.) field in the lower indo-gangetic plain, India.  Agronomy 11: doi:10.3390/agronomy11091894.
Mirriam, A., Mugwe, J., and Raza, M. A., Seleiman, M. F., Maitra, S. and Gitari, H. (2022). Aggrandizing soybean yield, phosphorus use efficiency and economic returns under phosphatic fertilizer application and inoculation with Bradyrhizobium. J. Soil Sci. Plant Nutr. 2022: doi.org/10.1007/s42729-022-00985-8.
Mogale, T. E., Ayisi, K. K., Munjonji, L., Kifle, Y. G. and Mabitsela, K. E. (2023). Understanding the impact of the intercropping system on carbon dioxide (CO2) emissions and soil carbon stocks in Limpopo province, South Africa. Int. J. Agron. 2023: doi.org/10.1155/2023/6307673.
Morizet-Davis, J., Vidaurre, N. A. M., Reinmuth, E., Rezaei-Chiyaneh, E., Schlecht, V., Schmidt, S., Singh, K., Vargas-Carpintero, R., Wagner, M. and von Cossel, M. (2023). Ecosystem services at the farm level—overview, synergies, trade-offs, and stakeholder analysis. Global Chall. 7: doi.org/10.1002/gch2.202200225.
Mushagalusa, G., Ledent, J. F. and Draye, X. (2008). Shoot and root competition in potato/ maize intercropping: effects on growth and yield. Environ. Exp. Bot. 64: 180-88.
Nandi, S., Maitra, S., Shankar, T., Panda, M. and Sairam, M. (2022). Impact of intercropping of vegetable legumes in summer maize on productivity and competitive ability of crops. Crop Res. 57: 122-27.
Ndjiondjop, M., Wambugu, P., Sangare, J., Gnikoua, K. (2018). The effects of drought on rice cultivation in sub-Saharan Africa and its mitigation: a review. African J. Agric. Res. 13: 1257-71.
Nelson, W., Hoffmann, M., Vadez, V., Rotter, R., Koch, M. and Whitbread, A. (2021). Can intercropping be an adaptation to drought? A model-based analysis for pearl millet–cowpea. J. Agron. Crop Sci.208: 910-27.
Nicholls, C. I. and Altieri, M. A. (2013). Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33: 257-74.
Omaliko, P. C. (2020). Evaluation of cowpea (Vigna unguiculata) as a pollinator enhancer in an intercropping system. M. Sc. Thesis, Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, U.S.A.
Ong, C. K., Black, C. R. and Wilson, J. eds., (2015). Tree-crop interactions: Agroforestry in a changing climate. CABI, Wallingford, UK.
Panda, S. K., Sairam, M., Sahoo, U., Shankar, T. and Maitra, S. (2022). Growth, productivity and economics of maize as influenced by maize-legume intercropping system. Farm. Manage. 7: 61-66.
Panth, M., Hassler, S. C. and Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture 10: doi:10.3390/agriculture10010016.
Pramanick, B., Kumar, M., Singh, S. K., Kumari, S. and Maitra, S. (2021). Soil Centric Approaches Towards Climate-Resilient Agriculture. In: Soil Science: Fundamentals to Recent Advances (Eds. Rakshit, A., Singh, S., Abhilash, P. and Biswas, A.) Springer Nature, Singapore, pp. 333-59.
Qiao, Y., Li, Z., Wang, X., Zhu, B., Hu, Y. and Zeng, Z. (2012). Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ. 58: 174-80.
Rafegeau, S., Gosme, M., Barkaoui, K., Garcia, L., Allinne, C., Deheuvels, O., Grimaldi, J., Jagoret, P., Lauri, P., Merot, A., Metay, A., Reyes, F., Saj, S., Curry, G. N. and Justes, E. (2023). The ESSU concept for designing, modelling and auditing ecosystem service provision in intercropping and agroforestry systems. A review. Agron. Sustain. Dev. 2023: doi:10.1007/s13593-023-00894-9.
Rahman, T., Ye, L., Liu, X., Iqbal, N., Du, J., Gao, R., Liu, W., Yang, F. and Yang, W. (2017). Water use efficiency and water distribution response to different planting patterns in maize–soybean relay strip intercropping systems. Exp. Agric. 53: 159-77.
Raji, S. G. and Dorsch, P. (2020). Effect of legume intercropping on N2O emissions and CH4 uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences 17: 345-59.
Raza, M. A., Feng, L. Y., Van Der Werf, W., Iqbal, N., Khan, I., Hassan, M. J., Ansar, M., Chen, Y. K., Xi, Z. J., Shi, J. Y., Ahmed, M., Yang, F. and Yang, W. (2019) Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crop. Res. 244: doi.org/10.1016/j.fcr.2019.107647.
Rezaei‑Chiyaneh, E., Mahdavikia, H., Alipour, H., Dolatabadian, A., Battaglia, M. L., Maitra, S. and Harrison, M. T. (2023). Biostimulants alleviate water defcit stress and enhance essential oil productivity: a case study with savory. Sci. Rep. 13: doi.org/10.1038/s41598-022-27338-w.
Ricord, M. (2018). Evaluating intercropping systems as a sustainable agroecosystem alternative to reduce greenhouse gas emissions. M. Sc. Environmental studies Thesis, University of Waterloo, Canada.
Rundlof, M. and Smith, H. G. (2006). The effect of organic farming on butterfly diversity depends on landscape context. J. Appl. Ecol. 43: 1121-27.
Sagar, L., Praharaj, S., Singh, S., Attri, M., Pramanick, B., Maitra, S., Hossain, A., Shankar, T., Palai, J. B. and Sahoo, U. (2022). Drought and heat stress tolerance in field crops: consequences and adaptation strategies. In: Response of field crops to abiotic stress: Current status and future prospects (Eds. Chaudhury, S. and Moulick, D.). CRC Press. pp. 91-102.
Saharan, K., Schütz, L., Kahmen, A., Wiemken, A., Boller, T. and Mathimaran, N. (2018). Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through "biofertilization” and "bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front. Environ. Sci. 6: 1–11.
Sahoo, U., Maitra, S., Dey, S., Vishnupriya, K. K., Sairam, M. and Sagar, L. (2023b). Unveiling the potential of maize-legume intercropping system for agricultural sustainability: A review. Farm. Manage. 8: 1-13.
Sahoo, U., Maitra, S., Sairam, M. and Sagar, L. (2023a). Potential and advantage of pearl millet-legume intercropping system: A review. Int. J. Biores. Sci10: 99-106.
Santosh, D. T., Sain, S. and Maitra, S. (2022). Estimation of crop water requirement in maize and chickpea for different patterns of intercropping. Ind. J. Nat. Sci. 13: 41392-98.
Sarath Kumar, D. and Maitra, S. (2020). Sorghum-based intercropping system for agricultural sustainability. Indian J. Nat. Sci. 10: 20306-13.
Singh, P. K., Jadhav, A. S., Varshneya, M. C. and Bote, N. L. (2002). Evaluating intercropping system on the basis of transmitted photosynthetically active radiation. J. Agrometeorol. 4: 191-93.
Sun, T., Zhao, C., Feng, X., Yin, W., Gou, Z., Lal, R., Deng, A., Chai, Q., Song, Z. and Zhang, M. (2020). Maize-based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water scarce region of northwest China. Food Energy Secur. 10: doi:10.1002/fes3.260.
Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10: doi:10.1038/s41598-020-70816-2.
Umesh, M. R., Angadi, S., Begna, S. and Gowda, P. (2022). Planting density and geometry effect on canopy development, forage yield and nutritive value of sorghum and annual legumes intercropping. Sustainability 14: doi.org/10.3390/su14084517.
UN (2023). United Nations, Department of Economic and Social Affairs, Sustainable development. Available online: https://sdgs.un.org/goals, accessed 29 August 2023.
Wang, X., Chen, Y., Chen, X., He, R., Guan, Y., Gu, Y. and Chen, Y. (2019). Crop production pushes up greenhouse gases emissions in China: evidence from carbon footprint analysis based on national statistics data. Sustainability 11: doi:10.3390/su11184931.
Wang, X., Chen, Y., Yang, K., Duan, F., Liu, P., Wang, Z. and Wang, J. (2021). Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. J. Clean. Prod. 314: doi.org/10.1016/j.jclepro.2021.127997.
Wang, Y., Qin, Y., Chai, Q., Feng, F., Zhao, C. and Yu, A. (2018). Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities. Front. Plant Sci. 9: doi.org/10.3389/fpls.2018.00483.
Wang, Z., Zhao, X., Wu, P., He, J., Chen, X., Gao, Y. and Cao, X. (2015). Radiation interception and utilization by wheat/maize strip intercropping systems. Agric. For. Meteorol. 204: 58-66.
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F. and Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733: doi.org/10.1016/j.scitotenv.2020.137782.
Willey, R. W. (1979). Intercropping-Its importance and research needs. Part-1. Competition and yield advantages. Field Crops Abstr. 32: 1 ̶ 10.
Xie, J., Wang, L., Li, L., Anwar, S., Luo, Z., Zechariah, E. and Kwami Fudjoe, S. (2021). Yield, economic benefit, soil water balance and water use efficiency of intercropped maize/potato in responses to mulching practices on the semiarid loess plateau. Agriculture 11: doi.org/10.3390/agriculture11111100.
Yang, F., Liao, D., Wu, X., Gao, R., Fan, Y., Raza, M.A., Wang, X., Yong, T., Liu, W. and Liu, J. (2017). Effect of above ground and below ground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 203: 16–23.
Yin, W., Chai, Q., Guo, Y., Feng, F., Zhao, C., Yu, A., Chang, L., Zhilong, F., Hu, F. and Chen, F. (2017). Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. J. Clean. Prod. 166: 197-208.
Yu, Y., Stomph, T. J., Makowski, D., Zhang, L. and van der Werf, W. (2016). A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Res. 198: 269-79.
Zhang, L., van der Werf, W., Bastiaans, L., Zhang, S., Li, B. and Spiertz, J. H. J. (2008). Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 107: 29-42.

Global Footprints