Loading...

Identification of drought tolerant wheat (Triticum aestivum) genotypes using stress tolerance indices in the western terai region of Nepal

 


Citation :- Identification of drought tolerant wheat (Triticum aestivum) genotypes using stress tolerance indices in the western terai region of Nepal. Res. Crop. 24: 652-659
MUKTI RAM POUDEL, MADHAV PRASAD NEUPANE, BINOD PANTHI, RADHAKRISHNA BHANDARI, SHIVALAL NYAUPANE, ANJALI DHAKAL AND HARIKALA PAUDEL muktipoudel8@gmail.com
Address : Tribhuvan University, Institute of Agriculture and Animal Science (IAAS), Pakihawa Campus, Bhairahawa, Rupandehi, Nepal
Submitted Date : 27-08-2023
Accepted Date : 20-09-2023

Abstract

Drought is the leading abiotic factor influencing global wheat production. To evaluate the drought performance of wheat genotypes, it is essential to identify and employ stress tolerance indices. These indices are essential for evaluating variation among genotypes in their response to drought, ultimately contributing to the development of more resilient and sustainable wheat production systems worldwide.. Thus, a field experiment was conducted in alpha lattice design with twenty genotypes including three checks viz., Bhrikuti, Gautam, and RR 21 at Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Rupandehi, Nepal, under irrigated and drought conditions, to identify drought tolerance wheat in winter season of 2022. In irrigated condition, five irrigations were applied at different critical growth stages. Whereas in drought conditions, only initial irrigation was applied after field preparation, for the germination of seed, and a poly house was constructed, to restrict all forms of natural precipitation. Genotypes were harvested when they attained harvestable maturity, grain yield was recorded, and stress tolerance indices were calculated. The mean grain yield reduction was 86.88 % in drought condition. Correlation analysis showed that Yield under Stress conditions (Ys) had a significant positive correlation with Yield Stability Index (YSI)(0.911**), Geometric Mean Productivity (GMP)(0.918**), and Stress Tolerant Index (STI)(0.911**). Thus, YSI, GMP, and STI are the important stress tolerance indices considered while selecting drought tolerance genotypes. Principal component and biplot analysis revealed that Bhrikuti, BL 5116, NL 1447, NL 1508, and Gautam were stable and high-yielding drought tolerant wheat genotypes.

Keywords

Biplot drought principal component analysis stress tolerance indices wheat

References

ADS (2017). Agriculture Development Strategy 2015 to 2035 Part 1. In Agriculture Development Strategy 2015 to 2035. http://nnfsp.gov.np/PortalContent.aspx?Doctype= ResourcesandID=325.
Akter, N. and Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 37:1-17. doi.org/10.1007/s13593-017-0443-9.
Ali, M. B. and El-Sadek, A. N. (2017). Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Commun. Biometry Crop Sci. 11: 77–89.
Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. ud din, Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A. and Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J. Biol. Sci. 27: 1818-23. doi.org/10.1016/j.sjbs.2019.12.009.
Bista, R. B. (2023). Forecasting climate variability in Nepal. J. Appl. Sci. Math. Edu. 12: doi.org/10.35877/sainsmat1150.
Bouslama, M. and Schapaugh, W. T. (1984).  Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Sci. 24: 933-37. doi.org/10.2135/CROPSCI1984.0011183X002400050026X.
Choukan, R., Taherkhani, T., Ghannadha, M. R. and Khodarahmi, M. (2006). Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. Iranian J. Agric. Sci. 8: 79-89.
DHS (2017). Nepal Demographic and health survey 2016. In Ministry of Health, Nepal (Vol. 14, Issue 1). doi.org/10.1080/19485565.1967.9987700.
Djanaguiraman, M., Narayanan, S., Erdayani, E. and Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20: 1-12. doi.org/10.1186/s12870-020-02479-0.
FAO, IFAD, UNICEF, WFP and A. W. (2019). The state and food security and nutrition in the world 2019. Safeguardin against economic slowdowns and downturns. Rome: FAO.
FAO (2020). The State of Food and Agriculture: Overcoming Water Challenges in Agriculture. In The State of Food and Agriculture 2020. Overcoming water challenges in agriculture.
Fernandez, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan. pp. 257-70.
Fischer, R. A. and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29: 897-912. doi.org/10.1071/AR9780897.
Grote, U., Fasse, A., Nguyen, T. T. and Erenstein, O. (2021). Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021: doi.org/10.3389/fsufs.2020.617009.
Guttieri, M. J., Stark, J. C., Brien, K. O. and Souza, E. (1978). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 41: 327-35.
Hamal, K., Sharma, S., Baniya, B., Khadka, N. and Zhou, X. (2020). Inter-annual variability of winter precipitation over nepal coupled with ocean-atmospheric patterns during 1987–2015. Front. Earth Sci. 8: doi.org/10.3389/feart.2020.00161.
Hossain, A. B. S., Sears, R. G., Cox, T. S. and Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci. 30: 622-27. doi.org/10.2135/CROPSCI1990.0011183X003000030030X.
Hossain, M. S., Persicke, M., ElSayed, A. I., Kalinowski, J. and Dietz, K. J. (2017). Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J. Exp. Bot. 68: 5961-76. doi.org/10.1093/jxb/erx388.
Irkitbay, A., Sapahkova, Z., Didenko, N., Madenova, A., Kanat, G. and Islam, K. R. (2023). Evaluating salicylic and oxalic acid on the enzyme activities, yield and stress tolerance in wheat (Triticum aestivum L.). Res. Crop. 24: 219-28.
Khan, M. A., Waseem Akram, M., Iqbal, M., Ghulam Muhu-Din Ahmed, H., Rehman, A., Arslan Iqbal, H. S. M. and Alam, B. (2023). Multivariate and association analyses of quantitative attributes reveal drought tolerance potential of wheat (Triticum aestivum L.) genotypes. Commun. Soil Sci. Plant Anal. 54:178-95. doi.org/10.1080/00103624. 2022.2110893.
Labad Ryma , Mohammedi Zekari, Echcherki Smain, Beldi Yasmine, Bounedjar Abdelwahab, Chachoua Abdelfetah, Kebir Khadidja, Kerimi Hamid, Tayeb Hamani, Ryma, Taibi Sabrina and Feddal Mohamed Amine (2023). Effect of tillage practices on durum wheat (Triticum durum) productivity under semi-arid climatic conditions. Farm. Manage. 8: 14-20.
Meisam Zargar, Nazih Rebouh, Elena Pakina, Anvar Gadzhikurbanov, Marina Lyashko and Bashir Ortskhanov (2017). Impact of climate change on cereal production in the highlands of eastern Algeria. Research on Crops 18: 575-82.
MoALD (2021). Statistical Information On Nepalese Agriculture (2077/78 ). In Publicatons of the Nepal in Data Portal (Vol. 73). https://nepalindata.com/resource/statistical-information-nepalese-agriculture-207374-201617/.
Mottaleb, K. A., Rahut, D. B., Kruseman, G. and Erenstein, O. (2018). Changing food consumption of households in developing countries: A Bangladesh case. J. Int. Food Agribusiness Mark. 30:156-74. doi.org/10.1080/08974438.2017.1402727.
Nouri, A., Etminan, A., Teixeira da Silva, J. A. and Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Aust. J. Crop Sci. 5: 8–16. doi.org/10.3316/ informit.834329535176781.
Patel, J. M., Vekariya, R. D., Patel, S. K., Patel, C. R., Malviya, A. V., and Chaudhary, S. M. (2021). Evaluation of bread wheat (Triticum aestivum) genotypes using drought susceptible and tolerance efficiency indices under irrigated and drought stress environment. Res. Crop. 22: 492-500
Paudel, B., Zhang, Y., Yan, J., Rai, R., Li, L., Wu, X., Chapagain, P. S. and Khanal, N. R. (2020). Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies. Climatic Change 158: 485-502. doi.org/10.1007/s10584-019-02607-2.
Poudel, M., Ghimire, S., Prasad Pandey, M., Dhakal, K., Bahadur Thala, D. and Paudel, H. K. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. J. Biol. Today’s World 9: 1-3.
Poudel, M. R., Ghimire, S. K., Pandey, M. P., Dhakal, K. H., Bahadur Thapa, D. and Khadka, D. K. (2019). Assessing genetic diversity for drought and heat stress tolerance of Nepalese wheat genotypes by SSR markers. Eurasia J Biosci. 13: 941–48.
Poudel, M. R., Poudel, P. B., Puri, R. R. and Paudel, H. K. (2021). Variability, correlation and path coefficient analysis for agro-morphological traits in wheat genotypes (Triticum aestivum L.) under normal and heat stress conditions. Int. J. Appl. Sci. Biotechnol. 9: 65–74. doi.org/10.3126/ijasbt.v9i1.35985.
Pradhan, P., Parajuli, U. N. and Khanal, R. C. (2017). Framework for effectiveness and resilience of small-and medium-scale irrigation systems in Nepal. In Government of Nepal (Issue June). https://cdkn.org/wp-content/uploads/2017/05/Framework-for-effectiveness-and-resilience-of-small-and-medium-scale-irrigation-systems-in-nepal.pdf
Rosielle, A. A. and Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment 1. Crop Sci. 21: 943-46. doi.org/10.2135/cropsci1981. 0011183X002100060033x.
Seleiman, M. F. and Kheir, A. M. S. (2018). Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193: 538-46. doi.org/10.1016/j.chemosphere.2017.11.053.
Shalaby, O. A. E. S. (2018). Alleviation of salinity stress in red cabbage plants by urea and sulfur applications. J. Plant Nutr. 41:1597-1603. doi.org/10.1080/01904167.2018.146.
Wan, C., Dang, P., Gao, L., Wang, J., Tao, J., Qin, X., Feng, B. and Gao, J. (2022). How Does the Environment Affect Wheat Yield and Protein Content Response to Drought? A Meta-Analysis. Front. Plant Sci. 13: 1941. doi.org/10.1038/nclimate247010. 3389/fpls.2022.896985.
Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. and Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 60: 805-26. doi.org/10.1111/jipb.12654.
Wieser, H., Koehler, P. and Scherf, K. A. (2020). The two faces of wheat. Front. Nutr. 7: doi.org/10.3389/fnut.2020.517313.
Yan, W. and Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20. doi.org/10.2135/cropsci2002.1100.
Yu, T. F., Xu, Z. S., Guo, J. K., Wang, Y. X., Abernathy, B., Fu, J. D., Chen, X., Zhou, Y.B., Chen, M. and Ye, X. G. (2017). Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports 7: 1-14. doi.org/10.1038/srep44050.

Global Footprints