Aziez, A. F. (2023). Growth response of soybean (Glycine max L.) under drought stress condition. Res. Crop. 24: 73-81.
Downie, J. A. (2014). Legume nodulation. Current Biol. 24: 184-90.
Etesami, H. and Adl, S. M. (2020). Can interaction between silicon and non–rhizobial bacteria benefit in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15: 1-20.
Gandhi, V. (2018). Influence of Rhizobium on the growth and symbiotic performance of Arachis hypogaea L under the water stress condition. Ame. J. Agric. Sci. 5: 10-18.
Heerwaarden, J. Van, Baijukya, F., Kyei-boahen, S., Adjei-nsiah, S., Ebanyat, P., Kamai, N., Wolde-meskel, E., Kanampiu, F., Vanlauwe, B. and Giller, K. (2017). Soyabean response to Rhizobium inoculation across sub-Saharan Africa : Patterns of variation and the role of promiscuity. Agric. Ecosyst. Environ. 261: 211-18.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L. and Grandy, A. S. (2018). Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139: 103-22.
Khaitov, B., Kurbonov, A., Abdiev, A. and Adilov, M. (2016). Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J. Soil Sci. 5: 105-12.
Lal, R., Kraybill, D., Hansen, D. O., Singh, B. R., Mosogoya, T. and Eik, L. O. (2016). Climate change and multi-dimensional sustainability in African agriculture, Springer. pp. 717.
Liu, S., Liu, W., Shi, X., Li, S., Hu, T., Song, L. and Wu, C. (2018). Dry-hot stress significantly reduced the nitrogenase activity of epiphytic cyanolichen. Sci. Total Environ. 620: 630-37.
Pawar, P. U., Kumbhar, C. T., Patil, V. S. and Khot, G. G. (2018). Effect of co-inoculation of Bradyrhizobium japonicum and Pseudomonas fluorescens on growth, yield and nutrient uptake in soybean [Glycine max (L.) Merrill]. Crop Res. 53: 57-62.
Purwaningsih, O., Indradewa, D. and Kabirun, S. (2013). Response of soybean plants to Rhizobium inoculation. Agrotrop: J. Agric. Sci. 2: 25-32.
Purwaningsih, O., Kusumastuti, C. T., Nugroho, Y. S. and Morib, C. Y. (2019). The effect of Rhizobium japonicum on the growth of soybean cultivars in coastal Area. Ilmu Pertanian (Agric. Sci.) 4: doi: 10.22146/ipas.36371.
Ronner, E., Franke, A. C., Vanlauwe, B., Dianda, M., Edeh, E., Ukem, B., Bala, A., van Heerwaarden, J. and Giller, K. E. (2016). Understanding variability in soybean yield and response to P-fertilizer and Rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Res. 186: 133-45.
Sarwani, M. (2013). Characteristics and Potential of Sub-Optimal Land for Agricultural Development in Indonesia. Jurnal Konservasi Sumber Daya Lahan (edisi leketronik) 7: 47-55.
Sulieman, S. and Tran, L. S. P. (2017). Legume nitrogen fixation in soils with low phosphorus availability: Adaptation and regulatory implication. Springer Nature. Switzerland. pp. 292.
Tairo, E. V. and Ndakidemi, P. A. (2013). Yields and economic benefits of soybean (Glycine max L.) as affected by Bradyrhizobium japonicum inoculation and phosphorus supplementation. Ame. J. Res. Commun. 1: 159-72.
Ulzen, J., Abaidoo, R. C., Ewusi-Mensah, N. and Masso, C. (2018). On-farm evaluation and determination of sources of variability of soybean response to Bradyrhizobium inoculation and phosphorus fertilizer in northern Ghana. Agric. Ecosyst. Environ. 267: 23–32.
Wang, Q., Liu, J., Zhu, H. and Harris, J. M. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Front. Plant Sci. 9: 1-8.
Yi, H., Yan, M., Huang, D., Zeng, G., Lai, C., Li, M., Huo, X., Qin, L., Liu, S., Liu, X., Li, B., Wang, H., Shen, M., Fu, Y. and Guo, X. (2019). Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Applied Catalysis B 250: 52-62.