Loading...

Response of soybean (Glycine max L.) cultivars to inoculation of Rhizobium japonicum in coastal sandy land


Citation :- Response of soybean (Glycine max L.) cultivars to inoculation of Rhizobium japonicum in coastal sandy land. Res. Crop. 24: 696-701
OKTI PURWANINGSIH, PUGUH BINTANG PAMUNGKAS AND C. TRI KUSUMASTUTI oktipurwaningsih71@gmail.com
Address : Department of Agrotechnology, Faculty of Agriculture, Universitas PGRI Yogyakarta, Yogyakarta 55182, Indonesia
Submitted Date : 11-08-2023
Accepted Date : 11-11-2023

Abstract

Soybean cultivars have various responses to the inoculation of Rhizobium japonicum. Inoculation of Rhizobium japonicum does not always have a positive response to soybean growth and yield. This study was conducted during March – June 2022 to analyze soybean cultivar's response to inoculation of Rhizobium japonicum in the coastal area. This research has two factors that are arranged in Complete Randomized Design (CRD). The first factor of Rhizobium inoculation is with and without Rhizobium japonicum inoculation. The second factor is soybean cultivars, namely Grobogan, Burangrang, Argomulyo, Anjasmara, Dena 1, Gema, Kaba, Wilis, Sinabung and Gepak Kuning. The results indicated that soybean cultivars gave various responses to Rhizobium japonicum inoculation. Rhizobium japonicum inoculation can increase the nitrogen fixation of soybean cultivars in coastal sandy land. Anjasmara cultivar gave the best response in fixing nitrogen. Indicators of nitrogen fixation can be seen from the number of root nodules, root nodule dry weight, and shoot N uptake. These results can have implications in optimizing Rhizobium inoculation in coastal sandy lands to sufficient nitrogen requirements.

Keywords

Cultivars inoculation nitrogen fixation Rhizobium japonicum soybean

References

Abdiev, A., Khaitov, B., Toderich, K. and Park, K. W. (2019). Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinum L.) enhance by Rhizobium and Azotobacter inoculations in saline soil. J. Plant Nutr. 42: 2703-14.
Aziez, A. F. (2023). Growth response of soybean (Glycine max L.) under drought stress condition. Res. Crop. 24: 73-81.
Downie, J. A. (2014). Legume nodulation. Current Biol. 24: 184-90.
Etesami, H. and Adl, S. M. (2020). Can interaction between silicon and non–rhizobial bacteria benefit in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15: 1-20.
Gandhi, V. (2018). Influence of Rhizobium on the growth and symbiotic performance of Arachis hypogaea L under the water stress condition. Ame. J. Agric. Sci. 5: 10-18.
Heerwaarden, J. Van, Baijukya, F., Kyei-boahen, S., Adjei-nsiah, S., Ebanyat, P., Kamai, N., Wolde-meskel, E., Kanampiu, F., Vanlauwe, B. and Giller, K. (2017). Soyabean response to Rhizobium inoculation across sub-Saharan Africa : Patterns of variation and the role of promiscuity. Agric. Ecosyst. Environ. 261: 211-18.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L. and Grandy, A. S. (2018). Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139: 103-22.
Khaitov, B., Kurbonov, A., Abdiev, A. and Adilov, M. (2016). Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J. Soil Sci. 5: 105-12.
Lal, R., Kraybill, D., Hansen, D. O., Singh, B. R., Mosogoya, T. and Eik, L. O. (2016). Climate change and multi-dimensional sustainability in African agriculture, Springer. pp. 717.
Liu, S., Liu, W., Shi, X., Li, S., Hu, T., Song, L. and Wu, C. (2018). Dry-hot stress significantly reduced the nitrogenase activity of epiphytic cyanolichen. Sci. Total Environ. 620: 630-37.
Pawar, P. U., Kumbhar, C. T., Patil, V. S. and Khot, G. G. (2018). Effect of co-inoculation of Bradyrhizobium japonicum and Pseudomonas fluorescens on growth, yield and nutrient uptake in soybean [Glycine max (L.) Merrill]. Crop Res. 53: 57-62.
Purwaningsih, O., Indradewa, D. and Kabirun, S. (2013). Response of soybean plants to Rhizobium inoculation. Agrotrop: J. Agric. Sci. 2: 25-32.
Purwaningsih, O., Kusumastuti, C. T., Nugroho, Y. S. and Morib, C. Y. (2019). The effect of Rhizobium japonicum on the growth of soybean cultivars in coastal Area. Ilmu Pertanian (Agric. Sci.) 4: doi: 10.22146/ipas.36371.
Ronner, E., Franke, A. C., Vanlauwe, B., Dianda, M., Edeh, E., Ukem, B., Bala, A., van Heerwaarden, J. and Giller, K. E. (2016). Understanding variability in soybean yield and response to P-fertilizer and Rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Res. 186: 133-45.
Sarwani, M. (2013). Characteristics and Potential of Sub-Optimal Land for Agricultural Development in Indonesia. Jurnal Konservasi Sumber Daya Lahan (edisi leketronik) 7: 47-55.
Sulieman, S. and Tran, L. S. P. (2017). Legume nitrogen fixation in soils with low phosphorus availability: Adaptation and regulatory implication. Springer Nature. Switzerland. pp. 292.
Tairo, E. V. and Ndakidemi, P. A. (2013). Yields and economic benefits of soybean (Glycine max L.) as affected by Bradyrhizobium japonicum inoculation and phosphorus supplementation. Ame. J. Res. Commun. 1: 159-72.
Ulzen, J., Abaidoo, R. C., Ewusi-Mensah, N. and Masso, C. (2018). On-farm evaluation and determination of sources of variability of soybean response to Bradyrhizobium inoculation and phosphorus fertilizer in northern Ghana. Agric. Ecosyst. Environ. 267: 23–32.
Wang, Q., Liu, J., Zhu, H. and Harris, J. M. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Front. Plant Sci. 9: 1-8.
Yi, H., Yan, M., Huang, D., Zeng, G., Lai, C., Li, M., Huo, X., Qin, L., Liu, S., Liu, X., Li, B., Wang, H., Shen, M., Fu, Y. and Guo, X. (2019). Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Applied Catalysis B 250: 52-62.
 
 
 

Global Footprints