Evaluation of the nutritive value and metal content of prevalent edible mushrooms in Bangladesh


Citation :- Evaluation of the nutritive value and metal content of prevalent edible mushrooms in Bangladesh. Res. Crop. 24: 536-543
Address : Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
Submitted Date : 5-05-2023
Accepted Date : 22-06-2023


 Mushroom cultivation in Bangladesh has been on the rise, however, their nutrient and heavy metal content is not well investigated. Herein, prevalent cultivars and strains of five mushroom species (Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus citrinopileatus, Auricularia auricula and Ganoderma lucidum) were analyzed for their nutritional values (total ash, lipid, crude fiber, protein and carbohydrates) as well as metal concentrations using standard methods. This study was conducted at the Laboratory of the Biochemistry Department at Sher-e Bangla Agricultural University, Dhaka, Bangladesh, from January to December 2022. The proximate composition of mushrooms varied from 2.67–11.57%, 2.05-3.81%, 15.52-22.61%, 6.1-12.71% and 46.01-57.85% for total ash, lipid, crude fiber, protein and carbohydrates, respectively. The highest values of Fe, Mn, Zn, P, Ca, Mg, K, S and N were 315.87, 19.14, 267.96, 2.92, 1.07, 0.44, 4.62, 0.78 and 3.06 μg/g, respectively. Remarkably, the highest amounts of heavy metals, Pb (5.65 μg/g) and Cd (0.22 μg/g) were found in Pleurotus citrinopileatus, while Cr (3.22 μg/g) and Ni (1.65 μg/g) were found in a variety of Pleurotus ostreatus. The findings revealed that heavy metal concentrations in two mushroom varieties exceeded the maximum permissible limit recommended by WHO/FAO. To the best of our knowledge, this is the first comprehensive analysis comparing the nutritional value and metal content of popular mushroom species of Bangladesh.


Edible mushrooms heavy metals nutrients proximate analysis


Rhaman, Ab, S. M. S., Naher, L. and Siddiquee, S. (2021). Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. J. Fungi 8doi.org/10.3390/ jof8010042.
Ahmed, S., Mahdi, M. M., Nurnabi, M., Alam, M. Z. and Choudhury, T. R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol. Rep9: 346-55. doi.org/10.1016/j.toxrep.2022.03.009.
Atila, F. and Kazankaya, A. (2023). Evaluation of the yield and heavy metal bioaccumulation in the fruit body of Pleurotus ostreatus grown on sugar mill wastewaters. Biomass Convers. Biorefin. 1: doi.org /10.1007/s13399-023-03913-7.
Bach, F., Helm, C. V., Bellettini, M. B., Maciel, G. M. and Haminiuk, C. W. I. (2017). Edible mushrooms: a potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. 52: 2382-92. doi.org/10.1111/ijfs.13522.
Bhattacharjya, D. K., Paul, R. K., Miah, M. N. and Ahmed, K. U. (2015). Comparative study on nutritional composition of oyster mushroom (Pleurotus Ostreatus Fr.) cultivated on different sawdust substrates. Biores. Com. 1: 93-98.
Carrasco, J., Zied, D. C., Pardo, J. E., Preston, G. M. and Pardo-Giménez, A. (2018). Supplementation in mushroom crops and its impact on yield and quality. AMB Express 8: 1-9. doi.org/10.1186/s13568-018-0678-0.
Dowlati, M., Sobhi, H. R., Esrafili, A., FarzadKia, M. and Yeganeh, M. (2021). Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food Sci. Technol. 109: 527-35. doi.org/10.1016/j.tifs.2021.01.064.
Folch, J., Lees, M. and Sloane-Stanely, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.
Isildak, Ö., Turkekul, I., Elmastas, M. and Tuzen, M. (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 86: 547-52.
Kakon, A., Choudhury, M. B. K. and Saha, S. (2012). Mushroom is an ideal food supplement. J. Dhaka Natl. Med. Coll. Hosp. 18: 58-62. doi.org/10.3329/jdnmch.v18i1.12243.
Kannan, K., Dhinakaran, S., Abhithra, K., Abinaya Mary, C., Afroz Hameed, J., Krishnakanth, K., Nagarajan, K., Nandha Nisha, S. and Sathya Priya (2021). Mycelium brick preparation using cultivated oyster mushroom, Pleurotus ostreatus -A boon for sustainable environment. Crop Res. 56: 196-201.
Khan, M. A., Tania, M., Amin, S. M. R. and Uddin, M. N. (2008). An Investigation on the nutritional composition of mushroom (Pleurotus florida) cultivated on different substrates. Bangladesh J. Mushroom. 2: 17-23.
Kabir, M. H., Kormoker, T., Shammi, R. S., Tusher, T. R., Islam, M. S., Khan, R. and Idris, A. M. (2022). A comprehensive assessment of heavy metal contamination in road dusts along a hectic national highway of Bangladesh: Spatial distribution, sources of contamination, ecological and human health risks. Toxin Rev. 41: 860-79.
Lavelli, V., Proserpio, C., Gallotti, F., Laureati, M. and Pagliarini, E. (2018). Circular reuse of bio-resources: The role of Pleurotus spp. in the development of functional foods. Food Funct9: 1353-72. doi.org/10.1039/C7FO01747B.
Mortada, A. N., Bolhassan, M. H. and Wahi, R. (2020). Physicochemical composition of spent oyster mushroom substrate. Malays. J. Anal. Sci. 24: 848-54. https://mjas.analis.com. my/mjas/v24_n6/pdf/Nasuha_24_6_4.pdf.
Nguyen, T. M. and Ranamukhaarachchi, S. L. (2021). Yield evaluation of king oyster mushroom (Pleurotus eryngii) on wheat straw mix substrates. Res. Crop. 22: 224-30.
Obodai, M., Ferreira, I. C., Fernandes, Â., Barros, L., Mensah, D. L. N., Dzomeku, M. and Takli, R. K. (2014). Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules, 19: 19532-48. doi.org/10.3390/molecules191219532.
Raghuramulu, N., Madhavan, N. K. and Kalyanasundaram, S. (2003). A manual of laboratory techniques. National Institute of Nutrition. Indian Council of Medical Research, Hyderabad-500 007, India. Pp. 56-62.
Rai, A., Rai, P. K., Singh, S. and Sharma, N. K. (2015). Environmental factors affecting edible and medicinal mushroom production. Production Techniques of Tropical Mushrooms in India, 1st ed.; Nirmal Publisher: New Delhi, India. pp.67-81.
Raman, J., Jang, K. Y., Oh, Y. L., Oh, M., Im, J. H., Lakshmanan, H. and Sabaratnam, V. (2021). Cultivation and nutritional value of prominent Pleurotus spp.: an overview. Mycobiology 49: 1-14. doi.org/10.1080/12298093.2020.1835142.
Rashidi, A. M. and Yang, T. A. (2016). Nutritional and antioxidant values of oyster mushroom (P. sajor-caju) cultivated on rubber sawdust. Int. J. Adv. Sci. Eng. Inf. Technol. 6: 161-64. https://core.ac.uk/download/pdf/296918987.pdf.
Reis, F. S., Barros, L., Martins, A. and Ferreira, I. C. F. R. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 50: 191-97. doi.org/10.1016/j.fct.2011.10.056.
Rugolo, M., Mascoloti Spréa, R., Dias, M. I., Pires, T. C. S. P., Ortega, M. A., Barroetaveña, C., Caleja, C. and Barros, L. (2022). Nutritional composition and bioactive properties of wild edible mushrooms from native Nothofagus Patagonian forests. Foods 11: doi.org/10.3390/ foods11213516.
Singh, D. R. (2017). A review on different benefits of mushroom. IOSR J. Pharm. 12: 107-11. doi.org/10.9790/3008-120102107111.
Soylak, M., Saraçoğlu, S., Tüzen, M. and Mendil, D. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem. 92: 649-52. doi.org/10.1016/ j.foodchem.2004.08.032.
SRDI (2016). Analytical Methods: Soil, Water, Plant Material and Fertilizer. 3rd Ed. Offline Digital Fertilizer Recommendation Program, Soil Resource Development Institute, Dhaka, Bangladesh. pp. 61.
Waktola, G. and Temesgen, T. (2020). Pharmacological activities of Oyster mushroom (Pleurotus ostreatus).  Nov. Res. Microbiol. J. 4: 688-95. doi.org/10.21608/nrmj.2020.84017.

Global Footprints