Loading...

 A review on the advantages of Jajar Legowo planting system in rice (Oryza sativa L.) cultivation 


Citation :- A review on the advantages of Jajar Legowo planting system in rice (Oryza sativa L.) cultivation. Res. Crop. 24: 433-441
PAIMAN, ARDIYANTA, CICILIA TRI KUSUMASTUTI, AGUSALIM MASULILI AND SITI FAIRUZ YUSSOF paiman@upy.ac.id
Address : Department of Agrotechnology, Faculty of Agriculture, Universitas PGRI Yogyakarta, Yogyakarta 55182, Indonesia
Submitted Date : 16-04-2023
Accepted Date : 27-06-2023

Abstract

Rice is an important crop for producing the staple food of the world's population, especially in Indonesia. However, national rice production has not been able to meet food needs so rice imports are still needed. Mostly, farmers in Indonesia still use the traditional planting system, namely the Tegel planting system (TPS). New innovations are needed to increase rice production. One of the innovations is to modify the TPS which can provide higher rice yield. This new technology is called the “Jajar Legowo” planting system which is abbreviated “Jarwo” planting system (JPS). This technology can increase a higher rice production than the conventional system. The JPS has been developed in Indonesia, but until now many farmers do not know the advantages of this technology. Therefore, this review article aimed to know the advantages of the JPS in rice cultivation compared to the TPS. Based on the literature available, there are several factors that support the success of the JPS in increasing rice yield, namely rice variety, rice fields, and plant spacing. The JPS of 2:1, 3:1, and 4:1 with a plant spacing of 25 × 12.5 × 50 cm could increase crop populations per hectare by 32%, 15%, and 11.87%, respectively than TPS with a plant spacing of 25 × 25 cm. The advantage of the JPS is that it could inhibit weed growth in the soil surface around rice clumps. Besides, increase in crop populations per hectare attainable compared to the TPS. In the literature reviewed, JPS of the 2:1 type can give rice yield per hectare higher than the types of 3:1, 4:1, or others. Recommended plant spacing for use in JPS is 25 × 12.5 × 50 cm. Further, the review article has made a suggestion that the JPS of the 2:1 type can be applied in rice cultivation, especially in irrigated fields.

Keywords

Jarwo planting system rice fields Tegel planting system rice variety plant spacing 


References

Abdulrachman, S., Agustiani, N., Gunawan, I. and Mejaya, M. J. (2012). Sistem tanam Legowo. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, Jakarta, Indonesia. (In Indonesian)
Ahmed, S., Alam, M. J., Hossain, A., Islam, A. K. M., Awan, T. H., Soufan, W., Qahtan, A. A., Okla, M. K. and Sabagh, A. E. (2021). Interactive effect of weeding regimes, rice cultivars, and seeding rates influence the rice-weed competition under dry direct-seeded condition. Sustainability 13: 1–15. doi.org/10.3390/su13010317.
Ali, M., Farooq, H. M. U., Sattar, S., Farooq, T. and Bashir, I. (2019). Effect of row spacing and weed management practices on the performance of aerobic rice. Cercetari Agronomice in Moldova 52: 17–25. doi.org/10.2478/cerce-2019-0002.
Anonymous (2015). Luas lahan sawah (hektar), 2013-2015. Badan Pusat Statistik, Jakarta, Indonesia. https://www.bps.go.id/indicator/53/179/1/luas-lahan-sawah.html (In Indonesian)
Antralina, M., Istina, I. N., Yuwariah, Y. and Simarmata, T. (2015). Effect of difference weed control methods to yield of lowland rice in the SOBARI. Procedia Food Sci. 3: 323-29. doi.org/10.1016/j.profoo.2015.01.035.
Anwari, G., Moussa, A. A., Wahidi, A. B., Mandozai, A., Nasar, J. and El-Rahim, M. G. M. A. (2019). Effects of planting distance on yield and agro-morphological characteristics of local rice (Bara variety) in Northeast Afghanistan. Current Agric. Res. J. 7: 350-57. doi.org/10.12944/ carj.7.3.11.
BBPPADI (2016). Klasifikasi umur tanaman padi. Subang, East Java, Indonesia. p. 1. http://bbpadi.litbang.pertanian.go.id/index.php/info-berita/tahukah-anda/klasifikasi-umur-tanaman-padi#:~:text=Berdasarkan umur%2C secara umum tanaman,padi varietas unggul berumur genjah. (In Indonesian)
Begna, S. H., Dwyer, L. M., Cloutier, D., Assemat, L., Tommaso, A., Zhou, X., Prithiviraj, B. and Smith, D. L. (2002). Decoupling of light intensity effects on the growth and development of C3 and C4 weed species through sucrose supplementation. J. Expt. Bot. 53: 1935-40. doi.org/ 10.1093/jxb/erf043.
Chen, H., Li, Q. P., Zeng, Y. L., Deng, F. and Ren, W. J. (2019). Effect of different shading materials on grain yield and quality of rice. Sci. Rep. 9: 1–9. doi.org/10.1038/s41598-019-46437-9.
Colbach, N., Gardarin, A. and Moreau, D. (2019). The response of weed and crop species to shading: Which parameters explain weed impacts on crop production? Field Crops Res. 238: 45–55. doi.org/10.1016/j.fcr.2019.04.008.
Daba, B. and Mekonnen, G. (2022). Effect of row spacing and frequency of weeding on weed infestation, yield components, and yield of rice (Oryza sativa L.) in Bench Maji Zone, Southwestern Ethiopia. Int. J. Agron. 2022: 1–13. doi.org/10.1155/2022/5423576.
Dass, A., Shekhawat, K., Choudhary, A. K., Sepat, S., Rathore, S. S., Mahajan, G. and Chauhan, B. S. (2017). Weed management in rice using crop competition: A review. Crop Prot. 95: 45–52. doi.org/10.1016/j.cropro.2016.08.005.
Giamerti, Y. and Yursak, Z. (2013). Yield component performance and productivity of rice Inpari 13 varieties in various planting system. Widyariset 16: 481-88. doi.org /10.14203/ widyariset.16.3.2013.481-484.
Htwe, T., Techato, K., Chotikarn, P. and Sinutok, S. (2021). Grain yield and environmental impacts of alternative rice (Oryza sativa L.) establishment methods in Myanmar. Appl. Ecol.  Environ. Res. 19: 507-24. doi.org/10.15666/aeer/1901_507524.
Hu, Q., Jiang, W., Qiu, S., Xing, Z., Hu, Y., Guo, B., Liu, G., Gao, H., Zhang, H. and Wei, H. (2020). Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J. Integrative Agric. 19: 1197-214. doi.org/10.1016/S2095-3119(19)62800-5.
Islam, M. H., Anwar, M. P., Rahman, M. R., Rahman, M. S., Talukder, F. U. and Sultan, M. T. (2020). Influence of weed interference period and planting spacing on the weed pressure and performance of Boro rice Cv. Brri Dhan29. Sustain. Food Agric. 2: 11–20. doi.org/10.26480/sfna.01.2021.11.20.
Istiyanti, E. (2021). Assessing farmers’ decision-making in the implementation of Jajar Legowo planting system in rice farming using a logit model approach in Bantul Regency, Indonesia. E3S Web of Conferences 232 : doi.org/10.1051/e3sconf/202123201013.
Kashyap, S., Singh, V. P., Guru, S. K., Pratap, T., Singh, S. P. and Kumar, R. (2022). Effect of integrated weed management on weed and yield of direct seeded rice. Indian J. Agric. Res. 56: 33–37. doi.org/10.18805/IJARe.A-5775.
Keerthi, M. M., Srivastav, P., Rajasekar, G., Arun, A. and Babu, R. (2023). Precision nitrogen management in aerobic system for maximising paddy (Oryza sativa L.) yields: A review. Crop Res. 58: 107-15.
Kumar, P., Khan, N., Singh, P. D. and Singh, A. (2018). Study on weed management practices in rice: A review. J. Pharmacog. Phytochem. 7: 817-20. http://www.phytojournal.com.
Kuotsu, K. and Singh, A. P. (2020). Establishment and weed management effects on yield of lowland rice (Oryza sativa). J. Pharmacog. Phytochem. 9: 1742-44. http://www.phytojournal.com.
Kurniawan, I., Kristina, L. and Awiyantini, R. (2021). Pengaruh permodelan jarak tanam Jajar Legowo terhadap pertumbuhan dan hasil padi (Oryza sativa) varietas IPB 3S. Jurnal Daun 5: 98–109. (In Indonesian)
Kusumawati, S., Kurniawati, S., Saryoko, A. and Hidayah, I. (2022). Empowering farmer group to increase rice productivity for promoting food security: A case study of the implementation of Jarwo super technology in Lebak District, Banten, Indonesia. IOP Conference Series: Earth and Environ. Sci. 978: doi.org/10.1088/1755-1315/978/1/012007.
Lattanzi, F. A. (2010). C3/ C4 grasslands and climate change. Grassl. Sci. 15: 3–13.
Malik, S., Duary, B. and Jaiswal, D. K. (2021). Integrated use of herbicide and weed mulch with closer spacing for weed management in dry direct seeded rice. Int. J. Bio-Resource Stress Manag. 12: 222-27. doi.org/10.23910/1.2021.2189d.
Megasari, R., Asmuliani, R., Darmawan, M., Sudiarta, I. M. and Andrian, D. (2021). Uji beberapa sistem tanam Jajar Legowo terhadap pertumbuhan dan produksi padi varietas Ponelo (Oryza sativa L.). Jurnal Pertanian Berkelanjutan 9: 1–9. (In Indonesia)
Mishra, S., Joshi, B., Dey, P. and Nayak, P. (2020). Effect of shading on growth, development and reproductive biology of Phalaris minor Retz. J. Pharmacog. Phytochem. 9: 803-07.
Mondal, M. M. A., Puteh, A. B., Ismail, M. R. and Rafii, M. Y. (2013). Optimizing plant spacing for modern rice varieties. Int. J. Agric. Biol. 15: 175-78.
Muslimin, Wahid, A., Sarintang and Subagio, H. (2021). Prospect of development of 2:1 “Jajar Legowo” planting system technology in the development of rice area, Takalar District. IOP Conf. Ser.: Earth Environ. Sci.  911:  doi.org/10.1088/1755-1315/911/1/012069.
Mutakin, J., Kurniadie, D., Widayat, D., Yuwariah, Y. and Sumekar, Y. (2021). Weed diversity in rice (Oryza sativa) fields with different cultivation technologies in Garut Regency, Indonesia. Res. Crop. 22: 459-65. doi.org/10.31830/2348-7542.2021.091.
Nagargade, M., Singh, M. K. and Tyagi, V. (2018). Ecologically sustainable integrated weed management in dry and irrigated direct-seeded rice. Adv. Plants Agric. Res. 8: 319-31. doi.org/10.15406/apar.2018.08.00333.
Nakamura, N., Nakajima, Y. and Yokota, A. (2011). Photosynthetic light reactions in C4 photosynthesis. Proc. 7th ACSA Conf. pp. 403–06.
Nestor, G. B. B., Anzara, K. G., Georges, Y. K. A., Anique, G. A., Arnaud, A. K. and Sélastique, A. D. (2020). Effect of spacing on the productivity of four varieties of rice (Oryza sativa) in the locality of Yamoussoukro (Côte d’Ivoire). Int. J. Res. Review 7: 140-45.
Nwokwu, G. N. (2015). Performance of lowland rice (Oryza sativa L.) as affected by transplanting age and plant spacing in Abakaliki, Nigeria. J. Biol., Agric. Healthcare 5: 165-72.
Paiman, Ansar, M., Ardiani, F. and Yusoff, S. F. (2022). Minimizing weed competition through waterlogging in rice (Oryza sativa) under various soil types. Res. Crop. 23: 755-62. doi.org/0.31830/2348-7542.2022.ROC-903.
Perthame, L., Colbach, N., Busset, H., Matejicek, A. and Moreau, D. (2022). Morphological response of weed and crop species to nitrogen stress in interaction with shading. Weed Res. 62: 160-71. doi.org/10.1111/wre.12524.
Ramesh, K., Rao, A. N. and Chauhan, B. S. (2017). Role of crop competition in managing weeds in rice, wheat, and maize in India: A review. Crop Prot. 95: 14–21. doi.org/10.1016/j.cropro.2016.07.008.
Rawung, J. B. M., Indrasti, R. and Sudolar, N. R. (2021). The impact of technological innovation of Jajar Legowo 2:1 planting system on rice business income. IOP Conf. Series: Earth and Environ. Sci. 807: doi.org/10.1088/1755-1315/807/3/032052.
Reuben, P., Kahimba, F. C., Katambara, Z., Mahoo, H. F., Mbungu, W., Mhenga, F., Nyarubamba, A. and Maugo, M. (2016). Optimizing plant spacing under the systems of rice intensification (SRI). Agric. Sci. 7: 270-78. doi.org/10.4236/as.2016.74026.
Saju, S. M. and Thavaprakaash, N. (2020). Influence of high density planting under modified system of rice intensification on growth, root characteristics and yield of rice in Western zone of Tamil Nadu. Madras Agric. J. 107: 25–29. doi.org/10.29321/maj.2020.000339.
Saju, S. M., Thavaprakaash, N., Sakthivel, N. and Malathi, P. (2019). Influence of high density planting on growth and yield of rice (Oryza sativa L.) under modified system of rice intensification. J. Pharmacog. Phytochem. 8: 3376–80.
Salma, M. U., Salam, M. A., Hossen, K. and Mou, M. R. J. (2017). Effect of variety and planting density on weed dynamics and yield performance of transplant Aman rice. J. Bangladesh Agric. Univ. 15: 167-73. doi.org/10.3329/jbau.v15i2.35058.
Santos, S. A. D., Tuffi-Santos, L. D., Sant’Anna-Santos, B. F., Tanaka, F. A. O., Silva, L. F. and Junior, A. D. S. (2015). Influence of shading on the leaf morphoanatomy and tolerance to glyphosate in Commelina benghalensis L. and Cyperus rotundus L. Aust. J. Crop Sci. 9: 135-42.
Shekhawat, K., Rathore, S. S. and Chauhan, B. S. (2020). Weed management in dry direct-seeded rice: A review on challenges and opportunities for sustainable rice production. Agronomy 10: 2-19. doi.org/10.3390/agronomy10091264.
Singh, V. P. and Maiti, R. K. (2016). A review on factors affecting crop growth in rice (Oryza sativa L.). Farm. Manage. 1: 101-14.
Sun, W., Ubierna, N., Ma, J. Y. and Cousins, A. B. (2012). The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: Changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism. Plant Cell  Environ. 35: 982-93. doi.org/10.1111/j.1365-3040.2011.02466.x.
Sunyob, N. B., Juraimi, A. S., Rahman, M. M., Anwar, M. P., Man, A. and Elamat, A. (2012). Planting geometry and spacing influence weed competitiveness of aerobic rice. J. Food Agric. Environ. 10: 330-36.
Suprihatno, B., Daradjat, A. A., Satoto, Baehaki, Widiarta, I. N., Setyono, A., Indrasari, S. D., Lesmana, O. S. and Sembiring, H. (2009). Deskripsi varietas padi. In Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian, Jakarta. (In Indonesian)
Susilastuti, D., Aditiameri, A. and Buchori, U. (2018). The effect of Jajar Legowo planting system on Ciherang paddy varieties. Agritropica 1: 1-8. doi.org/10.31186/j.agritropica.1.1.1-8.
Tang, W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y. and Sun, J. (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants 11: 2–18. doi.org/10.3390/plants11131688.
Thi, T. N. P., Ardi, A. and Warnita, W. (2020). The effect of Jussiaea octovalvis weed densities on the growth and yield of several introduced Vietnam rice (Oryza sativa) varieties. Int. J. Agric. Sci. 4: 43–52. doi.org/10.25077/ijasc.4.1.8-17.2020.
 
 

Global Footprints