Loading...

Evaluation of in vitro antimicrobial activity of Camellia sinensis leaves collected at different time of harvest 


Citation :- Evaluation of in vitro antimicrobial activity of Camellia sinensis leaves collected at different time of harvest. Res. Crop. 24: 378-383
KYOUNG-SUN SEO AND KYEONG WON YUN ykw@scnu.ac.kr
Address : Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea
Submitted Date : 7-02-2023
Accepted Date : 19-04-2023

Abstract

The amounts of chemicals in green tea depend on the time of harvest. In Korea, there is a tendency to harvest tea leaves to make green tea from around April 20 to the end of May. Therefore, we investigated the influence of harvest time of Camellia sinensis leaves on antimicrobial activity. The ethyl acetate and water fraction of ethanol extract from C. sinensis leaves collected every two weeks (April 30, May 14 and May 28, 2021) were tested against 4 Gram-positive and 3 Gram-negative bacteria and one yeast. Antimicrobial activity was screened for clear zone and minimal inhibition concentration (MIC) values determined by disc diffusion method. The ethyl acetate fraction was potentially effective against Methillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Staphylococcus aureus and Salmonella typhimurium at all the collection dates. The results showed the diameter of clear zone was proportional to the concentration of tested fractions. The antimicrobial activity of tea leaves was different by collection dates, the quantitative difference was not big. The MIC value of ethyl acetate fraction of tea leaves for Bacillus cereus and B. subtilis was 0.5 mg/ml, on the other hand, the MIC value of the water fraction of tea leaves for B. subtilis, MRSA, Pseudomonas fluorescens and Salmonella typhimurium was 30.0 mg/ml, regardless of collection date. The antimicrobial properties of C. sinensis leaves encouraged an innovative potential application in agricultural, pharmaceutical and food fields.

Keywords

Antimicrobial activity Camellia sinensis harvest time minimal inhibition concentration 


References

Aligiannis, N., Kalpoutzakis, E., Mitaku, S. and Chinou, I. B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49: 4168-70.
Burt, S. A., Van Der Zee, R., Koets, A. P., De Graaff, A. M., Van Knapen, F., Gaastra, W., Haagsman, H. P. and Veldhuizen, E. J. A. (2007). Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Appl. Environ. Microbiol. 73: 4484-90.
Choi, O. J., Jung, H. S. and Yun, K. W. (2013) Influence of different sampling site and storage duration on volatile components of Korean green tea. Res. J. Med. Pl. 10: 309-13.
Choi, O. J., Jung, H. S. and Yun, K. W. (2016). Variation in volatile compounds identified by headspace-GC/MS in Korean green tea. Res. Crop. 14: 960-63.
Chou, C.-C., Lin, L.-L. and Chung, K.-T. (1999). Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int. J. Food Microbiol. 48: 125-30.
de Souza, M. C., de Souza Mesquita, L. M., Pena, F. L., Tamborlina, L., da Silva, L. C., Viganóa, J., Antunes, A. E. C., Luchessi, A. D., Duartec, M. C. T., Barbero, G. F. and Rostagno, M. A. (2022). Potential application for antimicrobial and antileukemic therapy of a flavonoid-rich fraction of Camellia sinensis. Food Chem. Adv. 1: 100042.
Gupta, D. and Kumar, M. (2017). Evaluation of in vitro antimicrobial potential and GC-MS analysis of Camellia sinensis and Terminalia arjuna. Biotech. Rep. 13: 19-25.
Hsirh, S.-K., Xu, J.-R., Lin, N.-H., Li, Y.-C., Chen, G.-H., Kuo, P.-C. and Tzen, J. T. C. (2016). Antibacterial and laxative activities of strictinin isolated from Pu'er tea (Camellia sinensis). J. Food Drug Anal. 24: 722-29.
Keller, A. C., Weir, T. L., Broeckling, C. D. and Ryan, E. P. (2013). Antibacterial activity and phytochemical profile of fermented Camellia sinensis (fuzhuan tea). Food Res. Int. 53: 945-49.
Kumar, R. (2018). An introduction to cultivation of Darjeeling tea (Camellia sinensis L.). Farm. Manage. 3: 66-79.
Naveed, M., BiBi, J., Kamboh, A. A., Suheryani, I., Kakar, I., Fazlani, S. A. and El-Hack, M. E. A. (2018). Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed. & Pharmacother. 100: 521-31.
Nibir, Y. M., Sumit, A. F., Akhand, A. A., Ahsan, N. and Hossain, M. S. (2017). Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac. J. Tropic. Biomed. 7: 352-57.
Parmar, N., Rawat, M. and Kumar, V. J. (2012). Camellia sinensis (Green tea): A review. Global J. Pharmacol. 6 : 52-59.
  Salman, S., Öz, G., Felek, R., Haznedar, A., Turna, T. and Özdemir, F. (2022). Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong and black teas. Food Biosci. 49: 101884.
Sari, F., Turkmen, N., Polat, G. and Velioglu, Y. S. (2007). Total polyphenol, antioxidant and antibacterial activities of black mate tea. Food Sci. Tec. Res. 13: 265-69.
Sharangi, A. B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.): A review. Food Res. Int. 42: 529-35.
Sharma, R., Verma, S. and Kumar, D. (2021). Polyphenolics and therapeutic insights in different tissues extract and fractions of Camellia sinensis (L.) Kuntze (Kangra tea). Food Biosci. 42: 101164.
Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Liu, Y., Zhang, X., Zhang, R., Wu, Z. and Weng, P. (2021). Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. J. Food Protec. 84: 1801-08.

Global Footprints