Loading...

Molecular screening for Fusarium oxysporum resistance genes in chickpeas



Citation :- Molecular screening for Fusarium oxysporum resistance genes in chickpeas. Res. Crop. 24: 416-427
GULNUR SULEIMANOVA, ZAGIPA SAPAKHOVA, BAUYRZHAN KALIBAYEV, AIGUL MADENOVA AND GULNAZ NIZAMDINOVA gulnur.suleimanova@kaznaru.edu.kz
Address : Kazakh National Agrarian Research University, Almaty, Kazakhstan
Submitted Date : 20-01-2023
Accepted Date : 22-02-2023

Abstract

Root rot and wilt (Fusarium oxysporum) are the most common pathogens among grain legumes, which cause yield losses of 10 to 40%. Wilt caused by Fusarium oxysporum f.sp. ciceris is a devastating disease in chickpea growing area. In this study, 50 chickpea genotypes were studied to identify genetic sources of resistance to the disease in 2021 and 2022 vegetative seasons. The studies were carried out against the natural background of the experimental field at the Saimasai Agrotechnopark site of the Kazakh National Agrarian Research University, and the studies were carried out against an artificial background at the experimental site of Agropark Ontustik LLP located in the village of Zhalpaksay, Almaty region, Karasai district. The resistance and susceptibility of the plants to F. oxysporum were determined four weeks after artificial inoculation. In field trials, 70% of the genotypes were resistant to wilt and the remaining 30% showed susceptibility to the disease with varying degrees. Molecular methods were used to identify genetic sources of resistance. In the molecular analysis, all 50 genotypes were screened using the primers CaSTMS2, TA200, TA194, TA72, TA46, TR29 and TR7, which are closely related markers to resistance genes. Marker selection can identify resistant genes when screening chickpea genotypes for this pathogen. As a result of screening, resistant chickpea genotypes have been identified that can be used in the breeding program to develop F. oxysporum resistant chickpea varieties.

Keywords

Artificial inoculation chickpea genotypes Fusarium oxysporum molecular markers resistance ​


References

Allahverdipoor, K. H., Bahramnejad, B. and Amini, J. (2011). Selection of molecular markers associated with resistance to Fusarium wilt disease in chickpea (Cicer arietinum L.) using multivariate statistical techniques. AJCS 5: 1801-09.
Barman, P., Handique, A. K. and Tanti, B. (2014). Tagging STMS markers to Fuarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J. Biotechnol. 13: 370-75.
Budynkov, N. I. and Mikhaleva, S. N. (2018). Chickpea diseases in the south of the European territory of Russia. Seed infection // Achievements of Science and Technology of Agroindustrial Complex.  Т. 32: 31-35. DOI: 10.24411/0235- 2451-2018-10707.
Caballo, C., Madrid, E., Gil, J., Chen, W., Rubio, J. and Millan, T. (2019). Saturation of genomic region implicated in resistance to Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Mol Breeding 39: 16. 10.1007/s11032-019-0932-4.
Castro, P., Rubio, J., Madrid, E., Fern, A., Ndez-Romero, M. D., MillA´, N. T. and Gil, J. (2013). Efficiency of marker-assisted selection for ascochyta blight in chickpea. J. Agric. Sci. 153: 56-67. doi:10.1017/s0021859613000865.
Chavan,  S. B. and Koche, D. K. (2021). Correlating medicarpin content of chickpea cultivars as a key defense compound against, Fusarium wilt. Res. Crop. 22: 178-82.
Datta, J., Lal, N., Kaashyap, M. and Gupta P. P. (2010). Efficiency of three PCR-based marker systems for detecting DNA polymorphism in Cicer arietinum L. and Cajanus cajan L. Millspaugh. Genet. Engg. Biotechnol. J. 5: 1-15.
Dubey, S. C. Suresh, M. and Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40: 118-27.
FAOSTAT (2023). Retrieved January 13, 2023 from https://www.fao.org/faostat/ru/ data/QCL.
Hu, Z., Parekh, U., Maruta, N., Trusov, Y. and Botella, J. R. (2015). Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance. Front. Chem. 3: 1.
Jiménez-Díaz, R. M., Castillo, P., Jiménez-Gasco, M. del M., Landa, B. B. and Navas-Cortés, J. A. (2015). Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protec. 73: 16-27. 10.1016/j.cropro.02.023.
Jimenez-Diaz, R. M., Trapero-Casas, A., Cabrera, de la. and Colina, J. (1989). Races of Fusarium oxysporum f. sp. ciceris infecting chickpea in Southern Spain. In: Vascular Wilt Diseases of Plants, Tjamos, E. C. and Beckman, C. H. (eds.). NATO ASI series, vol. H28. Springer Verlag, Berlin. pp. 515-20.
Karami E. R., Talebi, M., Kharkesh, A. and Saidi, A. (2015). A linkage map of chickpea (Cicer arietinum L.) based on population from ILC3279×ILC588 crosses: location of genes for time to flowering, seed size and plant height. Genetika 47: 253-63.
Khasanova, G. J. (2021). Genotyping of domestic and world chickpea (Cicer arietinum L.) collection on traits of drought and salinity resistance based on SNP molecular markers. Ph. D. dissertation, Republic of Kazakhstan, Nur-Sultan, p. 196.
Kurishbaev, A. K., Khasanova, G. Zh., Jatayev, S. A., Turbekova, A. S. and Oshergina, I. P. (2019). Evaluation of chickpea collection by major  productivity elements in the conditions of Northern Kazakhstan. Sci. J. Saken Seifullin Kazakh Agrotechnical University. 4: 54-64.
Lal, D., Ravikumar, R. L., Jingade, P. and Subramanya, S.  (2021). Validation of molecular markers linked to Fusarium wilt resistance in recombinant inbred lines of chickpea (Cicer arietinum L.)// https://www.researchsquare.com/article/rs-366182/v1 April 21st, https://doi.org/10.21203/rs.3.rs-366182/v1.
Lysenko, V. (2012). Chickpeas are a profitable crop. Economy and us // Rodnik plus. 19.
Mannur, D. M., Babbar, A., Thudi, M., Sabbavarapu, M. M., Roorkiwal, M. and Yeri, S. B. (2019). Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol. Breeding. 39: 2. 10.1007/s11032-018-0908-9.
Methodological guidelines for the replenishment, conservation and study of the world collection of genetic resources of grain legume crops (2018). Methodological guidelines VIR. - St. Petersburg - 143 c.
Methodology for variety testing of agricultural plants (2015). Approved by Order of the Minister of Agriculture of the Republic of Kazakhstan, 13 August 2015, No. 06-2/254. IPS Әdilet https: // tengrinews. Kz/zakon/pravitelstvo_.
Muehlbauer, F. J. and Sarker, A. (2017). Economic importance of chickpea: Production, value and world trade. In: The Chickpea Genome. Cham: Springer International Publishing. pp. 5-13.
Nekrasov, A. Y. (2019). Sources for use in chickpea breeding under import substitution program. Grain legumes Cereals 2:  95-101. DOI: 10.24411/2309-348X-2019-11097.
Nugaeva, Sh. (1992). Symbiotic activity, yield and protein productivity of chickpea in conditions of Western Kazakhstan: autoref. Ph. in Agricultural Sciences: 06.01.05. Moscow, 25.
Pande, S., Rao, J. N. and Sharma, M. (2007). Establishment of the chickpea wilt pathogen F. oxysporum f. sp. ciceris in the soil through seed transmission. Eur. J. Plant Pathol. 23: 3-6.
Pashtetskyy, V. S., Ptichnyk, A. P. and Didovych, S. V. (2012). Technology of effective seed production of chickpea in Steppe zone of Ukraine. Feeds and Feed Production 74: 29-35.
Patil, B. S., Ravikumar, R. L., Bhat, J. S. and Soregaon, C. D. (2014). Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech. J. Genet. Plant Breed. 50: 171-76.
Pratap, A., Chaturvedi, S. K., Tomar, R., Rajan, N., Malviya, N. and Thudi, M. (2017). Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol. Genet. Genomics 292: 1237-45. doi: 10.1007/s00438-017-1343-z 21.
Ravikumar, R. L. and Babu, D. R. (2007). In vitro screening of chickpea genotypes for Fusarium wilt resistance through root feeding of pathotoxin. Curr. Sci. 93: 20-21.
Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M. and Gaur, P. M. (2020). Integrating genomics for chickpea improvement: Achievements and opportunities. Theor. Appl. Genet. 133 :1703-20. doi: 10.1007/s00122-020-03584-2.
Sahu V. K.,  Tiwari, S.,  Tripathi, M. K., Gupta, N.,  Tomar, R. S. Ahuja, A. and Yasin, M. (2020). Molecular marker validation and identification of Fusarium wilt-resistant chickpea genotypes. Indian J. Genet. Pl. Breed. 80: 163-72. DOI: 10.31742/IJGPB.80.2.6.
Sharma, K. D., Chen, W. and Muehlbauer, F. J. (2005). Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Disease 89: 385-90.
Shikhalieva, K. B., Akperov, Z. I., Amirov, L. A., Hasanova, S. K. and Babaeva, S. M. (2016). The role of chickpea (Cicer arietinum L.) gene pool from grain legume collection in solving the problems of breeding in Azerbaijan. Advances of Modern Natural Science 7: 101-05. URL: https://natural-sciences.ru/ru/article/view.id=36012. (date of accession: 13.01.2023.
Singh, P. K., Shrivastava, N., Sharma, B. and Bhagyawant, S. S. (2015). Effect of domestic processes on chickpea seeds for antinutritional contents and their divergence. Am. J. Food Sci. Technol. 3: 111-17.
Tanksley, S. D. and McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063-66.
Thudi, M., Chitikineni, A., Liu, X., He, W., Roorkiwal, M. and Yang, W. (2016b). Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep. 6: 38636. doi: 10.1038/srep38636 17.
Thudi, M., Khan, A.W., Kumar, V., Gaur, P. M., Katta, K. and Garg, V. (2016a). Whole genome re-sequencing reveals genome-wide variations among parental lines of mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol16: 10. doi: 10.1186/s12870-015-0690-3 16.
Varshney, R. K., Mohan, S. M., Gaur, P. M., Chamarthi, S. K., Singh, V. K. and Srinivasan, S. (2014). Marker-assisted backcrossing to introgress resistance to Fusarium wilt (FW) race 1 and Ascochyta blight (AB) in C 214, an elite cultivar of chickpea. Plant Genome 7: 1-11. doi: 10.3835/plantgenome2013. 10.0035 20.
Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S. and Sharpe, A. G. (2013). Draft genome sequence of chickpea (Cicer arietinum L.). Provides a resource for trait improvement. Nat. Biotechnol. 31: 240-46. doi: 10.1038/nbt.2491.
Varshney, R. K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H. D. and Yang, W. (2019). Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 51: 857-64. doi: 10.1038/s41588-019-0401-3.
Vishnyakova, M. A., Burlyaeva, M. O., Bulyntsev, S. V., Seferova, I. V., Plekhanova, E. S. and Nuzhdin, S. V. (2017). Local chickpea varieties from crop origin centres: Diversity and differences. Agric. Biol.,  52: 976-85. doi: 10.15389/agrobiology. 5.976rus.
Vishnyakova, M. A., Aleksandrova, T. G., Bulyntsev, S. V., Buravtseva, T. V., Burlyaeva, M. O., Egorova, G. P., Semenova, E. V., Seferova, I. V. and Yankov, I. I. (2016). Genetic resources of Mediterranean grain legumes in the Vir collection: Diversity and use. Agric. Biol. 51: 31-45.
Vus, N. A., Kobyzeva, L. N. and Bezuglaya, O. N. (2017). Formation of a working collection of chickpea on resistance to ascochytosis. Grain Legumes and Cereal Crops 4: 19-24.
Vyurkov, V. V. (2006). Crop rotations, cultivation and fertility reproduction in soil-protective farming in the Urals region. 2nd edn. - Uralsk: ZKCSTI. p. 70.

Global Footprints