Bailey, J. D. and Harrington C. A. (2006). Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiol. 26: 421-30. doi:10.1093/treephys/26.4.421.
Bardin, M. Y. (2022). Scenary forecasts of air temperature variations for the regions of the Russian up to 2030 using the empirical stochastic climate models. Russ. Meteorol. Hydrol. 36: 217-28.
Beckmann, J. J., Sherriff, R. L., Kerhoulas, L. P. and Kane, J. M. (2021). Douglas-fir encroachment reduces drought resistance in Oregon white oak of northern California. For. Ecol. Manag. 498. doi: 10.1016/j.foreco.2021.119543.
Belyaev, A. I., Semenyutina, A. V., Khuzhakhmetova, A. Sh. and Semenyutina, V. A. (2022). Analysis of bioresource collections on climatic rhythms and phenological processes. Ecol. Eng. 23: 87-94. doi: 10.12912/27197050/14152.
Belyakov, A. M. and Nazarova, M. V. (2023). Techniques for the formation of ecologically balanced agro-landscapes in the dry steppe zone of the Volgograd region, Russia. Res. Crop. 24: 185-90.
Gago, J., Daloso, D. M., Carriquí, M., Nadal, M., Morales, M., Araújo, W. L., Nunes-Nesi, A. and Flexas, J. (2020) Mesophyll conductance: The leaf corridors for photosynthesis. Biochem Soc Trans. 48: 429-39. doi: 10.1042/BST20190312.
Gulyanov, Yu. A. (2021). Changes in regional climatic conditions and productivity of winter wheat in the steppe zone of European Russia. TaurBull. Agrarian Sci. 4: 58-68. doi: 10.33952/2542-0720-2021-4-28-58-68.
Ivanova, L. A. (2014). Adaptive features of leaf structure in plants of different ecological groups. Russ. J. Ecol. 45: 107-15.
Ivanov, L. A., Ronzhina, D. A., Ivanova, L. A., Belousov, I. V., Chechulin, M. L., Gunin, P. D. and Pyankov, V. I. (2004). Structural and functional basis of adaptation of Gobi plants to desertification. Arid Ecosyst. 10: 91-102.
Khuzhakhmetova, A. Sh. (2015). Models of development of krone species and varieties of hazelnut in the aspect. Mod. Prob. Sci. Edu. 3: 555.
Knauer, J., Cuntz, M., Evans, J. R., Niinements, U., Tosens, T., Veromann-Jurgenson, L.-L., Werner, Ch. and Zaehle, S. (2022) Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol. 236: 357-68. doi: 10.1111/nph.18363.
Lévesque, M., Rigling, A., Siegwolf, R., Saurer, M. and Eilmann B. (2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol. 203: 94-109. doi: 10.1111/nph.12772.
Mohamed, N. (2020). Effect of antioxidants in promoting plant growth under climate change conditions. Res. Crop. 21: 424-34.
Mokronosov, A. T. and Borzenkova, R. A. (1978). Methods for quantitative assessment of the structure and functional activity of photosynthesized tissues and organs. Plant Breed. 61: 119-33.
Semenyutina, V. A. (2020). Ecological and biological basis for the introduction of Zizyphus jujuba Mill. and perspectives of multi-purpose application. National Research, Moscow, Russia. pp. 168. doi: 10.25726/worldjournal.pro/NR.9781952243202.
Semenyutina, A. V., Svintsov, I. P., Huzhahmetova, A. Sh. and Semenyutina, V. A. (2018). Regulation of increase of biodiversity of woody plants in protective forest plantings of the Volga region. Word Ecol. J. 8: 46-59.
Semenyutina, A. V., Svintsov, I. P., Khuzhakhmetova, A. Sh., Semenyutina, V. A. and Zelenyak, A. K. (2019). Methodology for the selection of an adapted gene pool of woody plants for agroforestry. Federal Research Center of Agroecology of the RAS, Volgograd, Russia. pp. 139.
Voronin, P. Yu., Ivanova, L. A., Ronzhina, D. A., Ivanov, L. A., Pyankov, V. I., Anenkhonov, O. A., Black, C. C. and Gunin, P. D. (2003). Structural and functional changes in the leaves of plants from steppe communities as affected by aridization of the Eurasian climate. Russ. J. Plant Physiol. 50: 604-11.
Zassoursky, I. I. (2021). The Green Turn. Climatescience.ru, 2021. pp. 20.
Zvereva, G. K. (1986). Ecological features of the assimilation apparatus of the steppe plants of Central Tuva. Russ. J. Ecol. 3: 23-27.
Bardin, M. Y. (2022). Scenary forecasts of air temperature variations for the regions of the Russian up to 2030 using the empirical stochastic climate models. Russ. Meteorol. Hydrol. 36: 217-28.
Beckmann, J. J., Sherriff, R. L., Kerhoulas, L. P. and Kane, J. M. (2021). Douglas-fir encroachment reduces drought resistance in Oregon white oak of northern California. For. Ecol. Manag. 498. doi: 10.1016/j.foreco.2021.119543.
Belyaev, A. I., Semenyutina, A. V., Khuzhakhmetova, A. Sh. and Semenyutina, V. A. (2022). Analysis of bioresource collections on climatic rhythms and phenological processes. Ecol. Eng. 23: 87-94. doi: 10.12912/27197050/14152.
Belyakov, A. M. and Nazarova, M. V. (2023). Techniques for the formation of ecologically balanced agro-landscapes in the dry steppe zone of the Volgograd region, Russia. Res. Crop. 24: 185-90.
Gago, J., Daloso, D. M., Carriquí, M., Nadal, M., Morales, M., Araújo, W. L., Nunes-Nesi, A. and Flexas, J. (2020) Mesophyll conductance: The leaf corridors for photosynthesis. Biochem Soc Trans. 48: 429-39. doi: 10.1042/BST20190312.
Gulyanov, Yu. A. (2021). Changes in regional climatic conditions and productivity of winter wheat in the steppe zone of European Russia. TaurBull. Agrarian Sci. 4: 58-68. doi: 10.33952/2542-0720-2021-4-28-58-68.
Ivanova, L. A. (2014). Adaptive features of leaf structure in plants of different ecological groups. Russ. J. Ecol. 45: 107-15.
Ivanov, L. A., Ronzhina, D. A., Ivanova, L. A., Belousov, I. V., Chechulin, M. L., Gunin, P. D. and Pyankov, V. I. (2004). Structural and functional basis of adaptation of Gobi plants to desertification. Arid Ecosyst. 10: 91-102.
Khuzhakhmetova, A. Sh. (2015). Models of development of krone species and varieties of hazelnut in the aspect. Mod. Prob. Sci. Edu. 3: 555.
Knauer, J., Cuntz, M., Evans, J. R., Niinements, U., Tosens, T., Veromann-Jurgenson, L.-L., Werner, Ch. and Zaehle, S. (2022) Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol. 236: 357-68. doi: 10.1111/nph.18363.
Lévesque, M., Rigling, A., Siegwolf, R., Saurer, M. and Eilmann B. (2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol. 203: 94-109. doi: 10.1111/nph.12772.
Mohamed, N. (2020). Effect of antioxidants in promoting plant growth under climate change conditions. Res. Crop. 21: 424-34.
Mokronosov, A. T. and Borzenkova, R. A. (1978). Methods for quantitative assessment of the structure and functional activity of photosynthesized tissues and organs. Plant Breed. 61: 119-33.
Semenyutina, V. A. (2020). Ecological and biological basis for the introduction of Zizyphus jujuba Mill. and perspectives of multi-purpose application. National Research, Moscow, Russia. pp. 168. doi: 10.25726/worldjournal.pro/NR.9781952243202.
Semenyutina, A. V., Svintsov, I. P., Huzhahmetova, A. Sh. and Semenyutina, V. A. (2018). Regulation of increase of biodiversity of woody plants in protective forest plantings of the Volga region. Word Ecol. J. 8: 46-59.
Semenyutina, A. V., Svintsov, I. P., Khuzhakhmetova, A. Sh., Semenyutina, V. A. and Zelenyak, A. K. (2019). Methodology for the selection of an adapted gene pool of woody plants for agroforestry. Federal Research Center of Agroecology of the RAS, Volgograd, Russia. pp. 139.
Voronin, P. Yu., Ivanova, L. A., Ronzhina, D. A., Ivanov, L. A., Pyankov, V. I., Anenkhonov, O. A., Black, C. C. and Gunin, P. D. (2003). Structural and functional changes in the leaves of plants from steppe communities as affected by aridization of the Eurasian climate. Russ. J. Plant Physiol. 50: 604-11.
Zassoursky, I. I. (2021). The Green Turn. Climatescience.ru, 2021. pp. 20.
Zvereva, G. K. (1986). Ecological features of the assimilation apparatus of the steppe plants of Central Tuva. Russ. J. Ecol. 3: 23-27.