Loading...

Effects of lime on soil chemical characteristics and performance of cowpea [Vigna unguiculata (L.) Walp.] on Oxic Haplustalf of a derived savanna ecology of Nigeria


Citation :- Effects of lime on soil chemical characteristics and performance of cowpea [Vigna unguiculata (L.) Walp.] on Oxic Haplustalf of a derived savanna ecology of Nigeria. Res. Crop. 24: 298-306
ARUNA OLASEKAN ADEKIYA, BOLAJOKO BISOLA AYORINDE, ELIZABETH TEMITOPE ALORI, CHARITY AREMU AND WUTEM SUNNY EJUE adekiya2009@yahoo.com
Address : Agriculture Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State. Nigeria
Submitted Date : 21-10-2022
Accepted Date : 29-04-2023

Abstract

The use of lime in reducing acidity, increasing nodulation and grain yield of field cowpea in Nigeria had not been determined. Hence, field experiments were conducted in 2020 and 2021 cropping seasons at the Landmark University, Omu-Aran, Nigeria. The study was undertaken to evaluate the effects of lime on soil chemical characteristics, growth, nodulation, and yield of cowpea on tropical-derived savanna. The treatments in each year consisted of five levels (0, 2.5, 5.0, 7.5 and 10 t/ha) of lime (CaCO3). The treatments were arranged in a RCBD and replicated three times. Findings showed that the application of lime improved soil chemical characteristics (pH, N, P, K, Ca, Na, Mg and CEC), growth, nodulation and yield of cowpea compared to the control. Lime application reduced acidity (H+Al3+) relative to the control. Lime increased the yield of cowpea from 0 to 2.5 t/ha after which there was a decrease. 2.5 t/ha lime increased pod weight of cowpea relative to the control by 51.2% in 2020 and 48.2% in 2021. 10 t/ha lime reduced pod weight of cowpea relative to the 2.5 t/ha by 237.62% in 2020 and 257.1% in 2021, the reduction in the yield of cowpea can best be explained by the presence of unfavourable soil pH conditions.  Therefore, the optimum yield of the cowpea crop was achieved at 2.5 t/ha of lime for the agro ecological zone.

Keywords

Cowpea lime nodulation pod weight soil chemical characteristics

References

Abera, T. and Abebe, Z. (2018) Effects of fertilizer, rhizobium inoculation and lime rate on growth and yields of field pea in Horro and Gedo Highlands. Adv. Crop Sci. Tech. 6. doi:10.4172/2329-8863.1000397.
Achalu, C. H., Gebrekidan, H., Kibret, K. and Tadesse, A. (2012). Response of barley to liming of acid soils collected from different land use systems of Western Oromia, Ethiopia. J. Biodivers. Environ. Sci. 2: 1-13.
Adegbite, K. A., Adekiya, A. O., Adebiyi, O. T. V., Alori, E. T., Ejue, W. S., Olayanju, A. and Aremu, C. (2020). Baseline fertility status of a gravelly Alfisol in a derived savannah agro-ecological zone of Nigeria. Open Agric. 5: 573-81.
Adekiya, A. O. (2022). Improving tropical soil productivity and cowpea [Vigna unguiculata (L.) Walp] performance using biochar and phosphorus fertilizer. Commun. Soil Sci. Plant Anal. 53: 2797-2811.
Adhikari, L. and Missaoui, A. M. (2017): Nodulation response to molybdenum supplementation in Alfalfa and its correlation with root and shoot growth in low pH soil. J. Plant Nutr. 40: 2290-2302.
Agbede, T. M., Adekiya, A. O., Odoja, A. S., Bayode, L. N., Omotehinse, P. O. and Adepehin, I. (2020). Effects of biochar and poultry manure on soil properties, growth, quality and yield of cocoyam (Xanthosoma sagittifolium Schott) in degraded tropical sandy soil. Exp. Agric. 56: 528-43.
Akinrinde, E. A. and Obigbesan, G. O.  (2000). Evaluation of the fertility status of selected soils for crop production in five ecological zones of Nigeria. In: Proc. 26th Annual Conference of Soil Science Society of Nigeria, O. Babalola (ed.). 30-3 October- November, Ibadan, Nigeria. pp. 79-88.
Ameyu, T. (2019). A review on the potential effect of lime on soil properties and crop productivity improvements. J. Environ. Earth Sci. 9: 17-23.
Anderson, J. M. and Ingram, J. S. I. (1993) Colorimetric determination of ammonium tropical soil biology and fertility. A Handbook of Methods, 2nd edn. Wallingford, UK: CAB International. pp. 73-74.
Asiwe, J. N. A. and Nkuna, M. K. (2021). Performance of cowpea (Vigna unguiculata) varieties under cowpea-maize strip intercropping and phosphorus fertilization in Limpopo Province, South Africa. Res. Crop. 22: 798-806.
Badole, S., Ashim, D., Nirmalendu, B. and Anindita, S. (2015). Liming influences forms of acidity in soils belonging to different orders under sub-tropical India. Commun. Soil Sci Plant Anal. 46: 2079-94.
Bakari, R., Mungai, N., Thuita, M. and Masso, C. (2020). Impact of soil acidity and liming on soybean (Glycine max) nodulation and nitrogen fixation in Kenyan soils, Acta Agric. Scandinavica, Section B – Soil Plant Sci. 70: 667-78.
Balume, K. M. I. (2013). Assessment of quality control of inoculants used on bean and soybean in eastern and central Africa. Masters thesis, University of Nairobi, Nairobi, Nigeria.
Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K. and Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] breeding. In: Book: Advances in Plant Breeding Strategies: Legumes. J. M. Al-Khayri et al. (eds.). pp. 201-243. doi.org/10.1007/978-3-030-23400-3_6.
Bremner, J. M. (1996). Nitrogen-total. In: Methods of Soil Analysis. Part 3. Chemical Methods, 2nd edn, D. L. Sparks, SSSA Book Series No. 5. WI: ASA and SSSA, Madison. pp. 85-121.
Chianu, J. N., Nkonya, E. M., Mairura, F. S., Chianu, J. N. and Akinnifesi, F. K. (2011). Biological nitrogen fixation and socio-economic factors for legume production in sub-saharan Africa: A review. Agron. Sustain. Dev. 31: 139-54.
Costa, A. and Rosolem, C. A. (2007). Liming in the transition to no-till under a wheat-soybean rotation. Soil Tillage Res. 97: 207-17.
Fageria, N. K., Moreira, A., Castro, C. and Moraes, M. F. (2013). Optimal acidity indices for soybean production in Brazilian oxisols. Commun. Soil Sci. Plant Anal. 44: 2941-51.
Fatokun, C. A., Tarawali, S. A., Singh, B. B, Kormawa, P. M. and Tamo, M. (2020). Challenges and opportunities for enhancing sustainable cowpea production. In: Proc. the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.
FFD (2011). Fertilizer use and management practices for crop production in Nigeria, 4th edn. Abuja, Nigeria: Federal Ministry of Agriculture and Rural Development, Nigeria.
Frank, K., Beegle, D. and Denning, J. (1998). Phosphorus. In: Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Research, Brown J. R. (ed.). Revised, Columbia: Missouri Agric. Exp. Station. Publication No. 221. pp. 21-26.
Gee, G. W. and Or, D. (2002). Particle-size analysis. In: Methods of Soil Analysis, Part 4, J. H. Dane and G. C. Topp (eds.). Madison, WI, USA: Physical Methods. Soil Science Society of America Book Series No. 5. pp. 255-93.
Ghady, A. E. and Alkoaiki, F. N. (2010). Examination of protein from common plant leaves for use as human food. Ame. J. Appl. Sci. 7: 323-34.
Goenaga, R., Gillaspie, A. G. and Quiles, A. (2010). Field screening of cowpea genotypes for alkaline soil tolerance. Hortsci. 45: 1639-42.
Haruna, I. M. (2011). Dry matter partitioning and grain yield potential in sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. Elixir. Agric. 39: 4884-87.
Hendershot, W. H., Lalande, H. and Duquette, M. (2007). Ion exchange and exchangeable cations. Soil sampling and methods of analysis. In: Canadian Society of Soil Science, 2nd edn. Chapter 18, M. R. Carter and E. G. Gregorich (eds.) Ibadan, Nigeria: International Institute of Tropical Agriculture. pp. 197-206. Boca Raton (Florida): CRC Press.
Jafer, D. G. and Hailu, G. (2017). Application of lime for acid soil amelioration and better soybean performance in South-Western Ethiopia. J. Biol. Agric. Health 7: 95-100.
Jensen, T. L. (2010). Soil pH and the availability of plant nutrients, IPNI Plant Nutrition Today, Fall 2010, No. 2, www.ipni.net/pnt.
Jinisha Blessie, J. P., John Kennady, Z., Karthikeyan, S. and Ramesh, D. (2021). Pearl millet (Pennisetum glaucum) as a sustainable feedstock for bioethanol production by catalytic downflow liquid contact reactor. Crop Res. 56: 270-75.
Kamble, M. V., Mahadkar, U. V. and Jagtap, D. N. (2017). Assessment of effect of zero tilled cowpea (Vigna unguiculata L.) grown with various inputs on growth, yield and economics. Farm. Manage. 2: 101-07.
Kisinyo, O. (2016). Long term effects of lime and phosphorus application on maize productivity in an acid soil of Uasin Gishu County, Kenya. Sky J. Agric. Res. 5: 48-55.
Kisinyo, P. O., Opala, P. A., Gudu, S. O., Othieno, C. O., Okalebo, J. R., Palapala, V. and Otinga, A. N. (2014). Recent advances towards understanding and managing Kenyan acid soils for improved crop production. Afr. J. Agric. Res. 9: 2397-2402.
Li, M., Liu, J., Xu, Y. and Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 24: 319-32.
Meena, H. M. and Prakasha, H. C. (2020). Effect of biochar, lime and soil test value based fertilizer application on soil fertility, nutrient uptake and yield of rice-cowpea cropping system in an acid soil of Karnataka. J. Plant Nutr. 43: 2664-79.
Menzies, N. W. (2003). Toxic elements in acid soils: Chemistry and measurement. In: Handbook of Soil Acidity, Zdenko Rengel (ed.). University of Western Australia, Perth, Western Australia, Australia. pp. 267-96.
Nelson, D. W. and Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, Part 3 – Chemical methods, D. L. Sparks, A. L. Page, P. A. Helmke and R. H. Loeppert (eds.). Madison, WI: Soil Seince Society of America, Americal Society of Agronomy. U.S.A. pp. 961-1010.
Pavlovkin J., Palóve-Balang, P., Kolarović, L. and Zelinová, V. (2009). Growth and functional responses of different cultivars of Lotus corniculatus to aluminum and low pH stress. J. Plant Physiol. 166: 1479-87.
Phares, C. A., Kwame, K. A., Frimponga, A., Danquahb, A., Asareb, A. T. and Aggor-Woananu, S. (2020). Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon 6: doi:10.1016/j.heliyon.2020.e05255.
Sarker, A., Abul Kashem, Md. and Osman, K. T. (2014) Phosphorus availability, uptake and dry matter yield of Indian spinach (Basella alba L.) to lime and phosphorus fertilization in an acidic soil, Open J. Soil Sci. 4: 42-46.
Silva, A. J., Uchôa, S. C. P., Alves, J. M. A., Lima, A. C. S., Santos, C. S. V., Oliveira, J. M. F.
and Melo, V. F. (2010). Resposta do feijão-caupi à doses e formas de aplicação de
fósforo em Latossolo Amarelo do Estado de Roraima. Acta Amazônica 40: 31-36.
Simon, T. (2018). Breeding cowpea [Vigna unguiculata (L.) Walp] for quality traits. Annals Rev. Res. 2: 555-609.
Soares, B. L., Ferreira1, P. A. A., de Oliveira-Longatti, S. M., Marra, L. M., Rufini, M.  de Andrade, M. J. B. and de Souza Moreira, F. M. (2014). Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria. Sci. Agric. 71: 171-80.
USDA (1999). Soil Taxonomy Soil Survey Staff, Agriculture Handbook, No. 436, 2nd edn. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service. pp. 869.
 
 

Global Footprints