Yield and yield quality characteristics of two varieties of sweet potato under different watering intervals ​

Citation :- Yield and yield quality characteristics of two varieties of sweet potato under different watering intervals​. Res. Crop. 24: 149-157
Address : Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran. Jl. Raya Bandung Sumedang Km. 21, Jatinangor, Sumedang 45363, West Java, Indonesia
Submitted Date : 24-11-2022
Accepted Date : 6-02-2023


Climate change significantly impacts sweet potato production because of the high potential for drought conditions. Understanding the regional impacts of climate change on the irrigation interval is important for effective water resource management. This study aims at determining the influence of the irrigation interval on the drought tolerance responses of two new sweet potato varieties from Universitas Padjadjaran. The experiment was arranged in a randomized block design (RBD) with two factors. The first factor was two varieties of sweet potato i.e. Awachy-1 (Orange-Fleshed) and Biang (Purple-Fleshed); and the second factor was the irrigation interval (1, 3, 5 and 7 days). This research was conducted in a screen house of Ciparanje experimental field station, Universitas Padjadjaran Jatinangor. Experimental results showed no interaction between the irrigation intervals and the varieties on the sweet potato's yield components and nutritional content. Biang provided the most optimal result regarding the number of tubers and dry mass, despite being watered once every three days. Biang also produced a higher number of tubers, shorter sweet potato length and higher dry weight than Awachy-1 in every irrigation interval. Biang also showed a higher value for nutritional content than Awachy 1 on total soluble solids, sugar and carbohydrate content. The optimal water usage to store the root yield of Biang and Awachy-1 is one to three days of irrigation intervals on the sweet potato’s tuber diameter and the plant's dry weight.  However, the irrigation interval that most significantly improved the weight of the tuber was one day, while the increased nutritional content of the tuber was three days. Biang and Awachy-1 cultivars could survive under drought conditions, although some yield components had decreased. These results suggested that the varieties or watering interval affected sweet potato growth and yield components.


Climate change clones irrigation interval sweet potatoes 


Aliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F. and van der Linden, C. G. (2020). Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. and Biochem. 146: 211-19.
Basílio, S. P., Borges, V., Vargas, F., Fernandes, M. and Silva, L. (2020). Potential of colored sweet potato genotypes as source of bioactive compounds. Revista Iberoamericana de Tecnología Postcosecha. 21.
BPS. (2019.) Data Luas Produksi, Produksi, dan Produktivitas Ubi Jalar 2014-2018 (p. 3). p. 3. Badan Pusat Statistik, Jakarta.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D.  and Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Sci. 8: 1-16.
Gajanayake, B., Reddy, K. R., Shankle, M. W. and Arancibia, R. A. (2013). Early-season soil moisture deficit reduces sweetpotato storage root initiation and development. HortScience 48: 1457-62.
Gajanayake, B., Reddy, K. R., Shankle, M. W. and Arancibia, R. A. (2014). Growth, developmental and physiological responses of two sweetpotato [Ipomoea batatas (L.) Lam] cultivars to early season soil moisture deficit. Scientia Horticulturae 168: 218-28.
Georgiou, P. E. and Karpouzos, D. K. (2017). Optimal irrigation water management for adaptation to climate change. Int. J. Sustainable Agric. Manage. and Informatics 3: 271. 77.
Guo, K., Liu, T., Xu, A., Zhang, L., Bian, X. and Wei, C. (2019). Structural and functional properties of starches from root tubers of white, yellow and purple sweet potatoes. Food Hydrocolloids 89: 829-36.
Hariadi, H., Sunyoto, M., Nurhadi, B. and Karuniawan, A. (2018). Additions concentration of encapsulant on biang clone purple sweet potatoes “chips” as natural dye powder. J. Powder Technol. and Adv. Functional Materials 1: 1-14.
Hernawati, D., Hamdani, J. S., Mubarok, S., Sumekar, Y. and Alfiya, M. (2022). Physiological response, yield and quality of GO potato (Solanum tuberosum) seed yield to various concentrations and time of application of prohexadione-ca bioregulator. Research on Crops 23: 640-648.
Huaman, Z. (1991). Descriptors for Sweet Potato. International Board for Plant Genetic Resource, Rome, Italy.
Karuniawan, A., Maulana, H., Anindita, P. A., Yoel, A., Ustari, D., Suganda, T. and Concibido, V. (2021a). Storage root yield and sweetness level selection for new honey sweet potato [Ipomoea batatas (L.) Lam]. Open Agriculture 6: 329-45.
Karuniawan, A., Maulana, H., Ustari, D., Dewayani, S., Solihin, E., Solihin, M. A., Amien, S. and Arifin, M. (2021b). Yield stability analysis of orange - fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon. 7: 1-10.
Kivuva, B. M., Githiri, S. M., Yencho, G. C. and Sibiya, J. (2014). Genotype x environment interaction for storage root yield in sweetpotato under managed drought stress conditions. J. Agric. Sci. 6: 1-16.
Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M. S. and Grotewold, E. (2015). Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signalling and Behaviour 10: 2-5.
Kurnia, N., Liliasari, Adawiyah, D. R., and Supriyanti, F. M. T. (2021). Determination of carbohydrates content in red dragon fruit for food chemistry. AIP Conf. Proc. 020032: 1-5.
Lebot, V. (2009). Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids. CABI Publishing, Reading United Kingdom.
Lewthwaite, S. L. and Triggs, C. M. (2012). Sweetpotato cultivar response to prolonged drought. Agron. New Zealand 42: 1-10.
Loebenstein, G. and Thottappilly, G. (2009). The Sweetpotato, 1st edn. Springer Dordrecht.
Maulana, H., Dewayani, S., Solihin, M. A., Arifin, M., Amien, S. and Karuniawan, A. (2020). Yield stability dataset of new orange-fleshed sweet potato [Ipomoea batatas (L.) Lam] genotypes in West Java, Indonesia. Data in Brief 32: 1-10.
Minh, N. P. (2020). Efficacy of thermal treatment on the stability of total phenolic, flavonoid and anthocyanin in purple-fleshed sweet potato (Ipomoea batatas). Res. Crop. 21: 534-37.
Mubarok. S., Ezura. H., Qonit, M. A. H., Prayudha, E., Anas, Suwali, N., Kusumiyati and Kurnia, D. (2019) Alteration of nutritional and antioxidant level of ethylene receptor tomato mutants, Sletr1-1 and Sletr1-2.Scientia Horticulturae 256: 104586.
Mubarok, S., Rahman, I. M., Kamaluddin, N. N. and Solihin, E. (2022). Impact of 1-Methylcyclopropene combined with chitosan on postharvest quality of tropical banana ‘Lady Finger’. Intl. J. Food Properties 25: 1171-85.
Mubarok, S., Wicaksono, F. Y., Budiarto, R., Rahmat, B. P. N. and Khoerunnisa, S. A. (2021). Metabolite correlation with antioxidant activity in different fruit maturation stages of Physalis peruviana. Biodiversitas 22: 2743-49.
Mubarok, S., Nuraini, A., Sumadi, S. and Hamdani, J. S. (2022a). Paclobutrazol and benzylaminopurine improve potato yield grown under high temperatures in lowland and medium land. Open Agriculture 7: 882-888.
Mubarok, S., Wicaksono, F. Y., Nuraini, A., Rahmat, B. P. N. and Budiarto, R. (2022b). Agronomical characteristics of sweet corn under different plant growth regulators during the dry season. Biodiversitas Journal of Biological Diversity 23: 3091-3098.
Murgayanti, Nuraini, A., Agtari, M., and Karuniawan, A. (2019). Respons klon ubi jalar (Ipomoea batatas L.) var. Awachy-1 dan var. Biang terhadap aplikasi paclobutrazol. Jurnal Kultivasi. 18: 958-61.
Mustamu, Y. A., Tjintokohadi, K., Grüneberg, W. J., Karuniawan, A. and Ruswandi, D. (2018). Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability. Chilean J. Agric. Res. 78: 461-69.
Nafi’ah, H. H., Hindersah, R., Mubarok, S., Maulana, H., Suganda, T., Concibido, V., and Karuniawan, A. (2021). Growth rate and yield response of several sweet potato clones to reduced inorganic fertilizer and biofertilizer. Biodiversitas 22: 1775-82.
Nuraini, A., Mubarok, S. and Hamdani, J. S. (2018). Effects of application time and concentration of paclobutrazol on the growth and yield of potato seed of G2 cultivar medians at medium altitude. Journal of Agronomy 17: 169-173.
Nuraini, A., Nugroho, P. S., Sutari, W., Mubarok, S. and Hamdani, J. S. (2021). Effects of cytokinin and paclobutrazol application time on growth and yield of G2 potato (Solanum tuberosum L.) Medians cultivar at medium altitude in Indonesia. Agric. and Natural Resources 55: 171-76.
Ogbonna, P. E., and Nweze, N. J. (2012). Evaluation of growth and yield responses of cocoyam (Colocasia esculenta) cultivars to rates of NPK 15 : 15 : 15 fertilizer. African J. Agric. Res. 7: 6553-61.
Parkash, V. and Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability. 12: 1-28.
Prabawardani, S. and Suparno, A. (2015). Water use efficiency and yield of sweetpotato as affected by nitrogen and potassium application. J. Agric. Sci. 7: 128-37.
Rahmat, B. P. N., Octavianis, G., Budiarto, R., Jadid, N., Widiastuti, A., Matra, D. D., Ezura, H. and Mubarok, S. (2023). SlIAA9 Mutation Maintains Photosynthetic Capabilities under Heat-Stress Conditions. Plants, 12(2), 378.
Raphalalani, T., Maila, Y. and Mphosi, M. (2020). Effect of processing methods on the food value of sweet potato variety ‘Blesbok’. Res. Crop. 21: 177-80.
Ravi, V., and Saravanan, R. (2012). Crop physiology of sweetpotato. Fruit, Vegetable and Cereal Sci. and Biotechnol. 6: 17-29.
Hamdani, J. S., Nuraini, A. and Mubarok, S. (2018). The use of paclobutrazol and shading net on growth and yield of potato'medians' tuber of G2 in medium land of Indonesia. Journal of Agronomy 17: 62-67.
Siqinbatu, Kitaya, Y., Hirai, H., Endo, R. and Shibuya, T. (2013). Effects of water contents and CO2 concentrations in soil on growth of sweet potato. Field Crops Res. 152: 36-43.
Šlosár, M., Hegedusová, A., Hegedus, O., Mezeyová, I., Farkaš, J. and Golian, M. (2019). The evaluation of selected qualitative parameters of sweet potato (Ipomoea batatas L.) in dependence on its cultivar. Potravinarstvo Slovak J. Food Sci. 13: 131-37.
Suminar, E., Budiarto, R., Nuraini, N., Mubarok, S. and Ezura, H. (2022) Morpho-physiological responses of iaa9 tomato mutants to different levels of PEG simulated drought stress. Biodiversitas 6: 3115-26.
Sunyoto, M., Andoyo, R. and Rumaya, R. (2018). Characteristics of sweet potatoes flour used as emergency food based on the type of varieties and the duration of fermentation. J. Powder Technol. and Adv. Functional Materials 1: 48-56.
Sunyoto, M., Hariadi, H., Nurhadi, B. and Karuniawan, A. (2019). Study of ultrasound extraction and stability on the physico-chemical characteristics of pure-bred purple sweet potato extract of unpad collection. Int. J. Pharmacognosy and Phytochemical Res. 11: 84-90.
Suradinata, Y. R., Hamdani, J. S. and Mubarok, S. (2019). Response of potato cultivars ‘Atlantic’and ‘Medians’ to the modified micro-climate at medium altitude. Research on Crops, 20(3): 542-548.
Vallarino, J. G., Mi, J., Petrik, I., Novak, O., Correa, S. M., Kosmacz, M., Havaux, M., Rodriguez-Concepcion, M., Al-Babili, S., Fernie, A. R. Skirycz, A., and Moreno, J. C. (2021). Manipulation of carotenoid metabolism stimulates biomass and stress tolerance in tomato. BioRxiv 5: 1-45.
Wang, T., Yan, J., Cheng, X. and Yu, Y. (2020). Irrigation influencing farmers’ perceptions of temperature and precipitation: A comparative study of two regions of the Tibetan plateau. Sustainability 12: 1-16.
Xu, W., Tang, W., Wang, C., Ge, L., Sun, J., Qi, X., He, Z., Zhou, Y., Chen, J., Xu, Z., Ma, Y. Z. and Chen, M. (2020). SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signalling pathway. Frontiers in Plant Sci. 11: 1-14.
Yooyongwech, S., Samphumphuang, T., Theerawitaya, C., Chaum, S. (2014). Physio-morphological responses of sweet potato [Ipomoea batatas (L.) Lam.] genotypes to water-deficit stress. Plant OMICS 7: 361-68.
Yooyongwech, S., Theerawitaya, C., Samphumphuang, T. and Chaum, S. (2013). Water-deficit tolerant identification in sweet potato genotypes [Ipomoea batatas (L.) Lam.] in vegetative developmental stage using multivariate physiological indices. Scientia Horticulturae 162: 242-51. 


Global Footprints