Identification of new sources of wheat stem rust resistance genes

DOI: 10.31830/2348-7542.2023.ROC-892    | Article Id: ROC-892 | Page : 15-27
Citation :- Identification of new sources of wheat stem rust resistance genes. Res. Crop. 24: 15-27
Address : Zhangir Khan West Kazakhstan agrarian-Technical University, Uralsk, Kazakhstan
Submitted Date : 15-11-2022
Accepted Date : 4-01-2023


Stem rust disease is widespread in the wheat-growing regions of Kazakhstan. Despite a large number of studies, the protection of wheat from the pathogen Puccinia graminis f. sp. tritici is considered one of the crucial problems. Chemical control has almost no impact on this disease and no exact result. The only effective way to control this disease is to cultivate resistant varieties and lines. Currently, 60 Sr resistance genes are known. Among them, Sr2, Sr22, Sr25/Lr19, Sr28, Sr36, and Sr39 gene sources are efficient at stem rust disease in different conditions of Kazakhstan. The molecular markers Xgwm533, CFA2019, PSY-E1, wPt-7004, Xgwm319 and Sr39#50 linked to Sr2, Sr22, Sr25/Lr19, Sr28, Sr36 and Sr39 were used, respectively. As a result of PCR analysis, the Sr2 gene was identified in six lines out of 16 lines, namely, GA951395-10-7/WX98D011-U38, Select, GA961565-27-6/KS99U673, GA961662-1-7/TAM107, VA01W-283/WX030513 and Sonalika. Five wheat lines were found as carriers of the Sr22 gene: Line c-19SB, Lutescens 7-04-4, Lutescens 220-03-45, GA961662-1-7/TAM107 and Line D 25 77. There are three lines that are carriers of Sr25/Lr19 gene sources, namely, Lutescens 220-03-45, Advance, and Line D 25 77. The Sr28 gene was identified in four wheat genotypes (GA951395-10-7/WX98D011-U38, Select, Advance and VA01W-283/WX03ASHTS0513) and the positive control W2691Sr2Bkt. An expected fragment (170 bp) for Xgwm319 properly for Sr36 gene was identified in four lines (GA951395-10-7/WX98D011-U38, Advance, VA01W-283/WX03ASHTS0513, GA961662-1-7/TAM107). The 10 wheat varieties were identified using primers Sr39 # 50R/F (Line C-19SB, Omskaya 37, Lutescens 7-04-4, Lutescens 220-03-45, Select, GA951395-10-7 / WX98D011-U38, Advance, GA961662-1-7 / TAM107’, VA01W-283/WX03ASHTS0513 and Line D 25 77). The studied sources of resistance can be used in breeding programs to create varieties of common wheat with durable resistance to stem rust.


Genotypes molecular markers resistance genes Sr genes stem rust wheat


Afzal, A., Shah, S. R. A., Ijaz, M. and Saeed, M. (2021). Combating Ug-99 - Current Scenario. Int. J. Phytopathol. 10: 57-70.
Amangeldikyzy, Z., Karbozova, R. D., Kochorov, A. S., Karakaya, A., Morgunov, A. I. and Gabdulov, M. A. (2018). Immune-phytopathological assessment of resistance of wheats to stem rust in conditions of the South-east of Kazakhstan. Ecol. Environ. Conser. 24: 1604-10.
Aoun, M., Kolmer, J. A., Rouse, M. N., Elias, E. M., Breiland, M., Bulbula, W. D., Chao, S., and Acevedo, M. (2019). Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3 (Bethesda). 9: 2535-47.
Bernardo, A. N., Bowden, R. L., Rouse, M. N., Newcomb, M. S., Marshall, D. S. and Bai, G. (2013). Validation of molecular markers for new stem rust resistance genes in US hard winter wheat. Crop Sci. 53: 755-64.
Bhardwaj, S. C., Khan, H., Patial, M., Sharma, P., Kumari, S., and Pal, D., (2021). Detection of Lr19/Sr25 in segregating populations of wheat (Triticum aestivum L.) using robust molecular markers. J. Cereal Res. 13: 149-56.
Bhattacharya, S. (2017). Deadly new wheat disease threatens Europe’s crops. Nature News 542: 145-46.
Bhavani, S., Hodson, D. P., Huerta-Espino, J., Randhawa, M. S. and Singh, R. P. (2019). Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front. Agr. Sci. Eng. 6: 210-24.
Elshafei, A., El-Orabey, W. M., Fathallah, F. B., Esmail, R. M. and Abou-Zeid, M. A. (2022). Phenotyping and validation of molecular markers associated with rust resistance genes in wheat cultivars in Egypt. Mol. Biol. Rep. 49: 903-15. 
Gultyaeva, E., Yusov, V., Rosova, M., Mal’chikov, P., Shaydayuk, E., Kovalenko, N., Wanyera, R., Morgounov, A., Yskakova, G. and Rsaliyev, A. (2020). Evaluation of resistance of spring durum wheat germplasm from Russia and Kazakhstan to fungal foliar pathogens. Cereal Res. Commun. 48: 71-79.
Hayden, M. J., Kuchel, H. and Chalmers, K. J. (2004). Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (T. aestivum L.). Theor. Appl. Genet. 109: 1641-47.
Hodson, D., Hovmøller, M., Morgunov, A., Salina, E. and Shamanin V. (2017). Assessing the stem rust situation in western Siberia. CRRC Rep.. 01: 1-3.
Hovmøller, M. S., Rodriguez-Algaba, J., Thach, T., Justesen, A. F. and Hansen, J. G. (2018). Report for Puccinia striiformis race analyses and molecular genotyping 2017, Global Rust Reference Center (GRRC), 10 February Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark 2018.
Jin, X., Chi, D., Wolfe, D., Hiebert, C., Fetch, T., Cao, W., Xue, A., Humphreys, G. and Fedak, G. (2022). Wheat germplasm development by gene pyramiding for resistance to race TTKSK of stem rust. Can. J. Plant Sci. 102: 760-63.
Kerber, E. R. and Dyke, P. L.  (1990). Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from amphiploid of Aegiolops speltoides x Triticum monoccum. Genome 33: 530-37.
Kolmer, J. A., Singh, R. P., Garvin, D. F., Viccars, L., William, H. M., Huerta-Espino, J., Ogbonnaya, F. C., Raman, H., Orford, S., Bariana, H. S. and Lagudah, E. S. (2008). Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci. 48: 1841-52.
Kokhmetova, A. M. and Atishova, M. N. (2012). Identification of sources of resistance to wheat stem rust using molecular markers. Russian J. Genet. Appl. Res. 2: 486-93.
Kokhmetova, A., Sapakhova, Z., Urazaliev, R., Yessimbekova, M., Yeleshev, R. and Morgounov,  A. (2014). Effect of spring biomass removal on expression of agronomic traits of winter wheat. World Appl. Sci. J. 30: 322-29.
Kokhmetova, A., Kremneva, O., Volkova, G., Atishova, M. and Sapakhova, Z. (2017). Evaluation of wheat cultivars growing in Kazakhstan and Russia for resistance to tan spot. J. Pl. Pathol. 99: 161-67.
Kokhmetova, A., Ali, Sh., Sapakhova, Z. and Atishova, M. (2018). Identification of genotypes-carriers of resistance to tan spot Ptr ToxA and Ptr ToxB of Pyrenophora tritici-repentis in common wheat collection. Vavilov J. Genet. Breed. 22: 978-86.
Koyshibayev, M. (2018). Wheat diseases. FAO Ankara. pp. 394.
Kumar, K., Jan, I., Saripalli, G., Sharma, P. K., Mir, R. R., Balyan, H. S. and Gupta, P. K. (2022). An update on resistance genes and their use in the development of leaf rust resistant cultivars in wheat. Front. Genet. 13: 816057.
Lewis, C. M., Persoons, A., Bebber, D. P., Kigathi, R. N., Maintz, J., Findlay, K. and Saunders, D. G. (2018). Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1: 1-9.
Lin, O., Gao, Y., Wu, X., Ni, X., Chen, R., Xuan, Y. and Li, T. (2021). Evaluation of resistance to wheat stem rust and identification of resistance genes in wheat lines from Heilongjiang province. Peer J. 9: e10580.
Madenova, A., Kokhmetova, A., Sapakhova, Z., Galymbek, K., Keishilov, Z., Akan, K. and Yesserkenov, A. (2020). Effect of common bunt (Tilletia caries (DC) Tul) infection on agronomic traits and resistance of wheat entries. Res. Crop. 21: 791-97.
Madenova, A., Sapakhova, Z., Bakirov, S., Galymbek, K., Yernazarova, G., Kokhmetova, A. and Keishilov, Z. (2021). Screening of wheat genotypes for the presence of common bunt resistance genes. Saudi J. Biol. Sci. 28: 2816-23.
Mathuria, R. C., Singh, V. K., Gogoi, R., Singh, U. D. and Aggarwal, R. (2015). Inheritance of stem rust resistance in Indian bread wheat cultivars. Res. Crop. 16: 734-41.
McIntosh, R. A., Wellings, C. R. and Park, R. F. (1995). Wheat Rusts: An Atlas of Resistance Genes. CSIRO Australia. p. 213.
Morgounov, A., Akin, B., Demir, L., Keser, M., Kokhmetova, A., Martynov, S., Orhan, Ş., Özdemir, F., Özseven, İ., Sapakhova, Z. and Yessimbekova, M. (2015). Yield gain due to fungicide application in varieties of winter wheat (Triticum aestivum) resistant and susceptible to leaf rust. Crop Pasture Sci. 66: 649-59.
Morgounov, A., Zykin, V. A., Sereda, G. A. and Urazaliev, R. A. (2001). Siberian and North Kazakhstan wheat pool. The World Wheat Book: A History of Wheat Breeding. (eds.  Bonjean, A. and  Angus, W.). Lavoisier Publishing: Paris. pp. 755-72.
Murray, M. G. and Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucl. Acids. Res. 8: 4321-26.
Olivera, P., Newcomb, M., Szabo, L. J., Rouse, M., Johnson, J., Gale, S. and Jin, Y. (2015). Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology, 105: 917-28.
Olivera, P. D., Sikharulidze, Z., Dumbadze, R., Szabo, L. J., Newcomb, M., Natsarishvili, K. and Jin, Y. (2019). Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 109: 2152-60.
Patpour, M., Hovmøller, M. S., Shahin, A. A., Newcomb, M., Olivera, P., Jin, Y. and Azab, M. (2016). First report of the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Egypt in 2014. Plant Dis. 100: 863-63.
Pretorius, Z. A., Singh, R. P., Wagoire, W. W. and Payne, T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84: 202-03.
Prins, R., Groenewald, J. Z., Marais, G. F., Snape, J. W. and Koebner R. M. D. (2001). AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet. 103: 618-24.
Procunier, J. D., Townley-Smith, T. F., Fox, S., Prashar, S., Gray, M., Kim, W. K., Czarnecki, E. and Dyck, P. L. (1995). RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum ). J. Genet. Breed. 49: 87-92.
Raghunandan, K., Tanwar, J., Patil, S. N., Chandra, A. K., Tyagi, S., Agarwal, P., Mallick, N., Murukan, N., Kumari, J., Sahu, T. K., Jacob, S. R., Kumar, A., Yadav, S., Nyamgoud, S., Vinod, Singh, A. K. and Jha S. K. (2022). Identification of novel broad-spectrum leaf rust resistance sources from Khapli wheat landraces. Plants 11: 1965.
Rehman, M. U., Gale, S., Brown-Guedira, G., Yue, J., Marshall, D., Whitcher, L., Williamson, S.,  Rouse, M., Ahmad, J., Ahmad, G., Shah, I. A., Sial, M. A., Rauf, Y., Rattu, A. U. R., Mirza, J. I., Ward, R., Nadeem, M., Ullah, G. and Imtiaz, M. (2020). Identification of seedling resistance to stem rust in advanced wheat lines and varieties from Pakistan. Crop Sci. 60: 804-11.
Roelfs, A. P., Singh, R. P. and Saari, E. E. (1992). Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT Mexico City. pp. 81.
Rouse, M. N., Nava, I. C., Chao, S., Anderson, J. A. and Jin, Y. (2012). Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). TAG. Theor. Appl. Genet. 125: 877-85.
Rsaliyev, A. S., Baygutov, M. Z., Asraubaeva, A. M., Gultiaeva, E. and Amirkhanova, N. Т. (2019). Sample collection of wheat rust and leaf spot populations in Kazakhstan. Proc. International Conference Science, Production, Business: A Modern State of the Innovation Agrarian Sector in Agroholding. pp. 48-53.
Rsaliyev, A. S. and Rsaliyev, S. S. (2018). Principal approaches and achievements in studying race composition of wheat stem rust. Vavilov J. Genet Breed. 22: 967-77.
Rsaliyev, A., Yskakova, G., Maulenbay, A., Zakarya, S. and Rsaliyev, K. (2020). Virulence and race structure of Puccinia graminis f. sp. tritici in Kazakhstan. Pl. Protec. Sci. 56: 275-284.
Saccomanno, A., Matny, O., Marone, D., Laidò, G., Petruzzino, G., Mazzucotelli, E., Desiderio, F., Blanco, A., Gadaleta, A., Pecchioni, N., De Vita, P., Steffenson, B., and Mastrangelo, A. M. (2018). Genetic mapping of loci for resistance to stem rust in a tetraploid wheat collection. Int. J. Mol.Sci. 19: 3907.
Sapakhova, Z., Irkitbay, A., Madenova, A. and Suleimanova, G. (2022). Mitigation effect of salicylic acid on wheat (Triticum aestivum L.) under drought stress. Res. Crop. 23: 267-75.
Saunders, D. G. O., Pretorius, Z. A., and Hovmøller, M. S. (2019). Tackling the re-emergence of wheat stem rust in Western Europe. Commun. Biol. 2: 1-3.
Shamanin, V. P., Pototskaya, I. V., Shepelev, S. S., Pozherukova, V. E., Salina, Е. А., Skolotneva, Е. S., Hodson, D., Hovmøller, M., Patpour, M. and Morgounov, A. I. (2020). Stem rust in Western Siberia–race composition and effective resistance genes. Vavilov J. Genet. Breed.  24: 131.
Shamanin, V., Salina, E., Wanyera, R., Zelenskiy, Y., Olivera, P. and Morgounov, A. (2016). Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica 212: 87-296.
Sharma, J. S., Fetch, T. G., Ghazvini, H., Rouse, M. N., Danilova, T., Friebe, B. and Hiebert, C. W. (2022). Origin and genetic analysis of stem rust resistance in wheat line Tr129. Sci Rep. 12: 4585.
Skolotneva, E. S., Kelbin, V. N., Morgounov, A. I., Boiko, N. I., Shamanin, V. P. and Salina, Е. А. (2020). Races composition of the Novosibirsk population of Puccinia graminis f.sp. tritici. Mycol. Phytopathol. 54: 49-58.
Spielmeyer, W., Sharp, P. J. and Lagudah, E. S. (2003). Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci. 43: 333-36.
Stakman, E. C. (1954). Recent studies of wheat stem rust in relation to breeding resistant varieties. Phytopathology, 44: 346-51.
Steuernagel, B., Periyannan, S. K., Hernandez-Pinzon, I., Witek, K., Rouse, ´M. N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., Jones, J. D., Lagudah, E. S. and Wulff, B. B. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34: 652-55.
Wu, H., Kang Z., Li, X., Li, Y., Li, Y., Wang, S. and Liu, D. (2020). Identification of wheat leaf rust resistance genes in Chinese wheat cultivars and the improved germplasms. Plant Disease 104: 2669-80.
Yskakova, G. S. and Rsaliyev, A. S. (2019). Comparative studying of resistance of commercial varieties of spring bread and durum wheat to stem rust. J. Exp. Biol. 2: 75-85.
Zhuchenko, A. A. (2001). Adaptive System of Plant Breeding (Ecological-genetic basis): Monograph. In two volumes./A. A. Zhuchenko. M .: Publishing house of RUDN. pp. 708.

Global Footprints