Loading...

Influence of crop seasons to quality attributes of watermelon (Citrullus vulgaris L.) and cantaloupe (Cucumis melo L.) in the sub-tropical zone of Vietnam


Citation :- Influence of crop seasons to quality attributes of watermelon (Citrullus vulgaris L.) and cantaloupe (Cucumis meloL.) in the sub-tropical zone of Vietnam. Res. Crop. 24: 99-104
NGUYEN PHUOC MINH nguyenphuocminh@tdmu.edu.vn
Address : Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
Submitted Date : 25-10-2022
Accepted Date : 4-02-2023

Abstract

Watermelon and cantaloupe are vital fruits that supply the basic energy requirement along with reduction in poverty of millions of farmers. However, the nutritional quality is influenced by soil, climatic condition and cultivation technique, adopted by the local farmers which needs to be explored in depth. Therefore, this research was conducted at Chon Thanh district, Binh Phuoc province, Vietnam in 2021 to survey the impact of crop seasons (winter-spring and autumn-winter) on the proximate composition, phenolic content and antioxidant activity of watermelon and cantaloupe fruits. This investigation was carried out on 24 orchards (for watermelon) and 18 green-houses (for cantaloupe) of Binh Phuoc province, Vietnam with total 216 watermelon fruits and 162 cantaloupe fruits in the winter–spring crop from October 2019 to March 2020; and total 216 watermelon fruits and 162 cantaloupe fruits in the autumn-winter crop from April 2020 to September 2020. Results showed that winter-spring provided a minor higher proximate composition, phenolic content and antioxidant activity on both the watermelon and cantaloupe fruits than ones grown in the autumn-winter season. It could be explained by the effect of crop seasons on the growth of fruits and accumulation of quality attributes.

Keywords

Antioxidant autumn-winter cantaloupe phenolic watermelon winter-spring

References

Altas, S., Kizil, G. and Kizil, M. (2011). Protective effect of watermelon juice on carbon tetrachloride induced toxicity in rats. Food Chem. Toxicol. 49: 2433-38.
Alves, F. A. L., Andrade, A. P., Bruno, R. L. A., Silva, M. G. V., Souza, M. F. V. and Santos, D. C. (2017). Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol., Campinas 37: 536-43.
Aminu, Z., Yabaya, A., Mohammed, S. S. D. and Bobai, M. (2018). Quality assessment of water melon (Citrulus lanatus) wine produced using Saccharomyces cerevisiae isolated from palm wine. J. Biomaterials 2: 65-73.
Anahita, B. D., Mohammad, M. S., Paria, B. D., Sara, V., Marcello, I. and Javad, M. (2019). A comparative study of essential oil constituents and phenolic compounds of arabian lilac (Vitex trifolia var. purpurea): An evidence of season effects. Foods 8: 52.
Andriana, Y., Xuan, T. D., Quy, T. N., Minh, T. N., Van, T. M. and Viet, T. D. (2019). Antihyperuricemia, antioxidant and antibacterial activities of Tridax procumbens L. Foods 8: 21.
AOAC (2005). Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists, Washington DC.
Aoussar, N.Rhallabi, N., Mhand, R. A., Manzali, R., Bouksaim, M., Douira, A. and Mellouki, F.(2020). Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinacea from Morocco. J. Saudi Soc. Agric. Sci. 19: 1-6.
BeGora, M. D. and Fahselt, D. (2001). Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104: 134-40.
Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76.
Binbin, S., Wene, Z., Xue, L. and Xuejun, P. (2017). Seasonal variations of phenolic profiles and antioxidant activity of walnut (Juglans sigillata Dode) green husks. Int. J. Food Properties 20: 2635-46.
Bjerke, J. W., Elvebakk, A., Dominguez, E. and Dahlback, A. (2005). Seasonal trends in usnic acid concentrations of Arctic, Alpine and Patagonian populations of the lichen, Flavocetraria nivalis. Phytochem. 66: 337-44.
Gasulla, F., Herrero, J., Esteban-Carrasco, A., Ros-Barceló, A., Eva, B., Zapata, J. M. and Guéra, A. (2012). Photosynthesis in lichen: Light reactions and protective mechanisms. In: Agricultural and Biological Sciences. Advances in Photosynthesis – Fundamental aspects, edited by Dr. Mohammad Najafpour. pp. 149-74.
Iloki Assanga, S. B., Lewis Lujan, L. M., Rivera-Castaneda, E. G., Gil-Salido, A. A., Acosta-Silva A. L., Meza-Cueto, C. Y. and Rubio-Pino, J. L. (2013). Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change). Afr. J. Biotechnol. 12: 4630-39.
Jovana, P., Snezana, M., Milan, M., Gordana, K., Aleksandra, P. and Snezana, T. (2019). Variation in the phenolic compounds profile and antioxidant activity in different parts of hawthorn (Crataegus pentagyna Willd.) during harvest periods. Pol. J. Food Nutr. Sci. 69: 367-78.
Kumar, P. S., Rao, M. C. S., Tamang, A. and Kumar, U. S. (2022). Effect of plant growth regulators on growth, yield and quality attributes of watermelon (Citrullus lanatus Thunb.). Crop Res. 57: 375-79.
Lucia M. J. C., Patrícia, B. G., Ronoel, L. O. G., Sidney, P., Pedro, H. F. M., José, L. V. C., Marília, R. N., Ana, C. LA., Carolina, R. A. V. and Semíramis, R. R. R. (2012). Total carotenoid content, α-carotene and β-carotene of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 47: 337-40.
Mandal, S., Patra, A., Samanta, A., Roy, S., Mandal, A., Mahapatra, T. D., Pradhan, S., Das, K. and Nandi, D. K. (2013). Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pacific J. Trop. Biomed. 3: 960-66.
Mehmet, M. O.Selin, F., Fahad, A., Kashif, G., ElFadıl, E. B. and Oladipupu, Q. A. (2019). The effect of harvest time and varieties on total phenolics, antioxidant activity and phenolic compounds of olive fruit and leaves. J. Food Sci. Technol. 56: 2373-85.
Mindaugas, L., Raimonda, B., Kristina, G., Jonas, V., Pranas, V., Darius, K. and Valdimaras, J. (2016). Seasonal variation of qualitative and quantitative composition of phenolic compounds and antioxidant activity in apple (Malus domestica Borkh.) fruits. Int. J. Biochem. Res. Rev. 14: 1-13.
Minh, N. P. (2022). Technical parameters affecting the physico-chemical, phenolic, antioxidant and sensory properties of watermelon (Citrullus vulgaris L.) Kefir. Res. Crop. 23: 621-27.
Mori, K., Goto-Yamamoto, N., Kitayama, M. and Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 58: 1935-45.
Nguyen, P. M. (2018). Combination of chitosan and lemongrass (Cymbopogon citratus) essential oil as edible coating to cantaloupe (Cucumis melo L.) quality and shelf life during storage. J. Global Pharm. Technol. 11: 22-24.
Olaniyi, A. F. and Umezuruike, L. O. (2013). Seasonal variation in chemical composition, aroma volatiles and antioxidant capacity of pomegranate during fruit development. Afr. J. Biotechnol. 12: 4006-19.
Pazouki, L., Kanagendran, A., Li, S., Kannaste, A., Memari, H. R., Bichele, R. and Niinemets, U. (2016). Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: From gene expression to emission responses. Environ. Exp. Bot. 132: 1-5.
Phan, L. T. K., Tran, T. M., Audenaert, K., Jacxsens, L. and Eeckhout, M. (2021). Contamination of Fusarium proliferatum and Aspergillus flavus in the rice chain linked to crop seasons, cultivation regions and traditional agricultural practices in Mekong Delta, Vietnam. Foods 10: 2064.
Sangamithra, A. and  Ragavi, P. (2020). Post-harvest attributes of muskmelon (Cucumis melo): A mini review on the potential of value addition. Curr. Nutr. Food Sci. 16: 854-59.
Sibusiso, C. M., Sechene, S. G. and Motetelo, A. M. (2020). Seasonal variations of phytochemical content and antioxidant activity of Senna italica leaves. Asian J. Chem. 32: 2371-74.
Singleton, V. L. and Rossi, J. A. J. R. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Amer. J. Enology Viticulture 16: 144-58.
Shirin, M. G., Harmit, S. and Mendel, F. (2019). Phenolic content and antioxidant activity of extracts of 12 melon (Cucumis melo) peel powders prepared from commercial melons. J. Food Sci. 84: 1943-48.
Tlili, I., Hiddler, C., Lenucci, M. S., Riadh, I., Jebbari, H. and Dalessandro, G. (2011). Bioactive compounds and axtioxidant activities of different watermelon cultivars as affected by fruit sampling area. J. Food Comp. Anal. 24: 307-14.
Tong, C., Peng, C., Wang, L., Zhang, L., Yang, X., Xu, P. and Qi, H. (2016). Intravenous administration of lycopene, a tomato extract, protects against myocardial ischemia-reperfusion injury. Nutr. 8: 138.
Yanni, C., Shengzuo, F., Xiangxiang, F., Xulan, S. and Wanxia, Y. (2019). Seasonal variation in phenolic compounds and antioxidant activity in leaves of Cyclocarya paliurus (Batal.) Iljinskaja. Forests 10. doi: 10.3390/f10080624.
 

Global Footprints