Loading...

Effect of blanching and convective drying on phytochemical constituents of dried tea from white mulberry (Morus alba) leaf



Citation :- Effect of blanching and convective drying on phytochemical constituents of dried tea from white mulberry (Morus alba) leaf. Res. Crop. 24: 158-165
NGUYEN PHUOC MINH nguyenphuocminh@tdmu.edu.vn
Address : Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
Submitted Date : 25-10-2022
Accepted Date : 4-02-2023

Abstract

White mulberry (Morus alba) leaf is highly valued due to its health-promoting attributes. It is specified by a great content of phytochemical constituents with excellent antioxidant properties. This research was conducted at STNanotech Laboratory in 2021 to evaluate the dried tea production from the white mulberry leaf. The total phenolic content, total flavonoid content, DPPH free radical scavenging, FRAP ferric reducing antioxidant and beta-carotene bleaching activity in the raw white mulberry leaf were primarily analyzed. The raw white mulberry leaf was blanched in different conditions (100/5, 95/10, 90/15, 85/20 and 80/25 oC/s) to inactivate enzymes.  The blanched leaves were cut into small pieces with dimension of 0.5 × 3.5 cm. The cut mulberry leaves were then convective-dried at different conditions (50/18, 55/15, 60/12, 65/9, and 70/6 oC/h) by a convective dryer. Dried tea was left to cool and ready for testing of total phenolic content, total flavonoid content, DPPH free radical scavenging, FRAP ferric reducing antioxidant and beta-carotene bleaching activity. Results showed that raw mulberry leaves should be blanched in hot water at 95/10 (oC/s) and convective-dried at 60/12 (oC/h) to maintain the highest bioactive contents and antioxidant properties. The dried mulberry leaf tea still retained the most valuable ingredients in raw material.

Keywords

Antioxidant blanching convective drying leaf tea phenolic white mulberry

References

Al-Janabi, A. S. A. and Alhasnawi, A. N. (2021). Evaluation of fertilizers effect on the maACO1 gene expressions in mulberry (Morus alba) transplants. Res. Crop. 22: 231-38.
Amin, I., Norazaidah, Y. and Emmy Hainida, K. I. (2006). Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem. 94: 47-52.
Amin, I. and Tan, S. H. (2002). Antioxidant activity of selected commercial seaweeds. Malays. J. Nutr. 8: 167-77.
Andriana, Y., Xuan, T. D., Quy, T. N., Minh, T. N., Van, T. M. and Viet, T. D. (2019). Antihyperuricemia, antioxidant and antibacterial activities of Tridax procumbens L. Foods 8: 21.
Bandna, D., Neha, S., Dinesh, K. and Kamal, J. (2013). Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 5: 14-18.
Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nat. 181: 1199-1200.
Chuah, A. M., Lee, Y. C., Yamaguchi, T., Takamura, H., Yin, L. J. and Mabota, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chem. 111: 20-28.
Dewanto, V., Wu, X. and Liu, R. H. (2002). Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-64.
Dorantes-Alvarez, L., Jaramillo-Flores, E., González, K., Martinez, R. and Parada, L. (2011). Blanching peppers using microwaves. Procedia Food Sci. 1: 178-83.
Ferreira, O. and Pinho, S. P. (2012). Solubility of flavonoids in pure solvents. Ind. Engin. Chem. Res. 51: 6586-90.
Han, C. H., Hong, S. Y., Lee, H. H., Kang, J. S. and Yoon, M. H. (2017).  Enhancement of 1-deoxynojirimycin content in leaf extracts of Morus alba L. by lactic acid bacteria fermentation. Res. Crop. 18: 783-88.
Hiroshi, U., Shizuka, Y., Riya, S. A., Takumi, O. and Ken, K. (2014). Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using đť›˝-carotene bleaching assay. J. Nanomater. 2014: 802596.
Hu, L., Wang, C., Guo, X., Chen, D., Zhou, W., Chen, X. and Zhang, Q. (2021) Flavonoid levels and antioxidant capacity of mulberry leaves: Effects of growth period and drying methods. Frontier Plant Sci. 12: 684974.
Joubert, E. (1990). Effect of batch extraction conditions on extraction of polyphenols from rooibos tea (Aspalathus-Linearis). Int. J. Food Sci. Technol. 25: 339-43.
Kaiser, A., Kammerer, D. R. and Carle, R. (2013). Impact of blanching on polyphenol stability and antioxidant capacity of innovative coriander (Coriandrum sativum L.) pastes. Food Chem. 140: 332-39.
Kobus-Cisowska, J., Dziedzinski, M., Szymanowska, D., Szczepaniak, O., Byczkiewicz, S., Telichowska, A. and Szulc, P. (2020). The effects of Morus alba L. fortification on the quality, functional properties and sensory attributes of bread stored under refrigerated conditions. Sustainability 12: 6691.
Mandal, S., Patra, A., Samanta, A., Roy, S., Mandal, A., Mahapatra, T. D., Pradhan, S., Das, K. and Nandi, D. K. (2013). Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pacific J. Trop. Biomed. 3: 960-66.
Marco, G. J. (1968). A rapid method for evaluation of antioxidants. J. Amer. Oil Chem. Soc. 45: 594-98.
Monika, P., Ewa, F., Monika, B., Krystyna, E. S. B., Justyna, P., Dominik, K., Oskar, S., Joanna, K. C., Maciej, J. and Urszula, T. (2019). Air-drying temperature changes the content of the phenolic acids and flavonols in white mulberry (Morus alba L.) leaves. Ciencia Rural 49: e20190489.  
Mwai, L. M., Kingori, A. M. and Ambula, M. (2022). Mulberry leaves as a feed source for livestock in Kenya: A review. Int. J. Agric. Res. Innovation Technol. 11: 1-9.
Norafida, A. and Aminah, A. (2018). Effect of blanching treatments on antioxidant activity of frozen green capsicum (Capsicum annuum L. var. bell pepper). Int. Food Res. J. 25: 1427-34.
Oboh, G., Akinyemi, A. J., Ademiluyi, A. O. and Bello, F. O. (2013). Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Amaranthus cruentus leaf as affected by blanching. Afr. J. Pharm. Pharmacol. 7: 1026-32.
Piechocka, J., Szulc, P., Dziedzinski, M., Kobus-Cisowska, J., Szczepaniak, O. and Szymanowska-Powałowska, D. (2020). Antioxidant potential of various solvent extract from Morus alba fruit and its major polyphenols composition. Ciencia Rural 50: e20190371.
Sakihama, Y., Michael, F., Cohen, M. F., Stephen, C., Grace, S. C. and Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicol. 177: 67-80.
Salta, J., Martins, A., Santos, R. G., Neng, N. R., Nogueiraa, J. M. F. and Justino, J. (2010). Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars – A comparative study. J. Funct. Foods 2: 153-57.
Shubhajit, S., Dronachari, M. and Ramachandra, C. T. (2022). Comparison of drying characteristics and quality of tender mulberry leaves (Morus alba) using five different drying methods. J. Med. Plants Stud. 10: 30-35.
Singleton, V. L. and Rossi, J. A. J. R. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Amer. J. Enol. Viticulture 16: 144-58.
Sun, X., Liu, J., Zou, Y. and Lin, G. (2016). Effects of drying methods on dried quality of mulberry leaf. Chin. J. Food Sci. 16: 139-46.
Tan, J. J. Y., Lim, Y. Y., Siow, L. F. and Tan Joash, J. B. L. (2015). Effects of drying on polyphenol oxidase and antioxidant activity of Morus alba leaves. J. Food Processing Preservation 39: 2811-19.
Thidarat, S., Udomsak, M., Methin, P. and Suneerat, Y. (2016). Antioxidant compounds and activities in selected fresh and blanched vegetables from north-eastern Thailand. Chiang Mai J. Sci. 43: 834-44.
Wang, Y., Song, K. Y. and Kim, Y. (2022). Effects of thermally treated mulberry leaves on the quality, properties and antioxidant activities of yogurt. J. Food Processing Preservation 46: e16139.
Wen, T. N., Prasad, K. N., Yang, B. and Ismail A. (2010). Bioactive substance contents and antioxidant capacity of raw and blanched vegetables. Innovative Food Sci. Emerging Technol. 11: 464-69.
Yang, T., Ping, W., Yilin, W., Shekhar, U. K., Yongbin, H., Jiandong, W. and Jianzhong, Z. (2016). Power ultrasound as a pre-treatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochem. 31:  310-18.
Yusman, T, Tantan, W. and Yudi, G. (2016). The effect of drying temperature on the antioxidant activity of black mulberry leaf tea (Morus nigra). Rasayan J. Chem. 9: 889-95.

 
 
 

Global Footprints