Response of selected nutrient elements in pea (Pisum sativum L.) leaf tissues to the seed priming-and-drying technology in cucurbitacin phytonematicides

Citation :- Response of selected nutrient elements in pea (Pisum sativum L.) leaf tissues to the seed priming-and-drying technology in cucurbitacin phytonematicides. Res. Crop. 24: 105-112
K. M. POFU AND P. W. MASHELA kgabo.pofu@ul.ac.za
Address : University of Limpopo, Department of Plant Production, Soil Science and Agricultural Engineering, Green Biotechnologies Research Centre of Excellence, Private Bag X1106, Sovenga, 0727, Republic of South Africa
Submitted Date : 22-09-2022
Accepted Date : 5-01-2023


Priming-and-drying technology for pea (Pisum sativum L.) seeds with hypogeal germination showed that the technology could improve plant growth and development, while suppressing nematode population densities, but without information on the potential causal factors for the former. A study was, therefore, conducted in Limpopo Province, South Africa, to investigate the extent to which plant responses could be associated with accumulation of foliar nutrient elements in pea plants post-subjecting pea seeds to the technology. After a 2-h priming of pea seeds in geometric concentration of Nemarioc-AL and Nemafric-BL phytonematicides and then air-dried in ovens at 26ºC for 72 h. Seeds were sown in 20-cm-diameter plastic pots filled with appropriate growing mixture, with one trial in the greenhouse and the other on microplots. At 60 days after sowing, 10 healthy mature leaves per plant were prepared for extraction of nutrient elements through the digestion method and then quantified in Atomic Absorption Spectrophotometer ICPE-9000. Iron, Na, K and Zn in leaf tissues of pea plants versus increasing phytonematicides concentration, regardless of the growing condition, exhibited significant (P ≤ 0.05) negative or positive quadratic equations. In conclusion, results suggested that the priming-and-drying technology could affect pea plant growth through disproportionate accumulation of nutrient elements in foliar leaf tissues. 


Cucurbitacin iron PAD technology pea potassium sodium zinc


Bango, H., Shadung, K. G. and Mashela, P. W. (2019). Influence of Nemarioc-AL and Nemafric-BL phytonematicides on mineral nutrient elements in tomato leaf tissues under field conditions. Res. Crop. 20: 590-95.
Campbell, N. A. (1990). Biology. Benjamin/Cummings Publisher, Redwood City.
Causton, D. R. (1977). A Biologist’s Mathematics: Contemporary Biology. Edward Arnold, London.
Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A. and Qiu, S. X. (2005). Cucurbitacins and cucurbitane glycosides: Structures and biological activities. Nat. Prod. Rep. 22: 386-99.
Collect, R. L. (2020). A comparative study of the development and reproduction of Meloidogyne enterolobii and other thermophilic South African Meloidogyne species. M. Sc. Dissertation, North-West University, Potchefstroom, South Africa.
Dube, Z. P. (2016). Nemarioc-AL and Nemafric-BL phytonematicides. Ph. D. thesis, University of Limpopo, Sovenga, South Africa.
Ghasemi, A. and Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10: 486-89.
Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research, John Wiley & Sons.
Higa, T. and Parr, J. F. (1994). Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Centre: Atami, Japan.
Jeffrey, C. (1980). A review of Cucurbitaceae. Bot. J. Linn. Soc. 81: 233-47.
Liu, D. L., An, M., Johnson, I. R. and Lovett, J. V. (2003). Mathematical modelling of allelopathy. III. A model for curve-fitting allelochemical dose responses. Non-lin. Biol. Toxicol. Med. 1: 37-50.
Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S. S., Pace, R., Lechowska, K., Quinet, M. and Garnczarska, M. (2016). In: Seed Priming: New Comprehensive Approaches for an Old Empirical Technique, Araujo, S., Balestrazzi, A. and Lutts et al. (eds.). IntechrOpen, London, UK. doi 10.5772/64420.
Mafeo, T. P. and Mashela, P. W. (2009). Responses of germination in tomato, watermelon and butternut squash to a Cucumis bio-nematicide. J. Agric. Environ. Sci. 6: 215-19.
Mafeo, T. P., Mashela, P. W., Mphosi, M. S. and Pofu, K. M. (2011). Modelling responses of maize, millet and sorghum seedlings to crude extracts of Cucumis myriocarpus fruit as pre-emergent bio-nematicide. Afr. J. Agric. Res. 6: 3678-84.
Mashela, P. W. (2002). Ground wild cucumber fruits suppress numbers of Meloidogyne incognita on tomato in micro plots. Nematropica 32: 13-19.
Mashela, P. W., De Waele, D., Dube, Z., Khosa, M. C., Pofu, K. M., Tefu, G., Daneel, M. S. and Fourie, F. (2017). Alternative nematode management strategies. In: Nematology in South Africa: A View from the 21st Century, Fourie, H., Spaull, V. W., Jones, R. K., Daneel, M. S. and De Waele, D. (eds). Springer, Cham, Switzerland. pp. 151-81.
Mashela, P. W. and Pofu, K. M. (2017). Influence of cucurbitacin-containing phytonematicides on selected nutrient elements in leaf tissues of green bean under greenhouse conditions. Acta Agric. Scand. Sect. B-Soil Plant Sci. 67: 743-47.
Mashela, P. W., Pofu, K. M. and Bopape-Mabapa, P. M. (2022). Efficacy of seed priming with cucucurbitacin phytonematicides against Meloidogyne enterolobii on pea. Front. Microbiol. 13. doi.org/10.3389/fmicb.2022.863808.
Mokoele, T. (2018). Interactive effects of cucurbitacin-containing phytonematicides and Biomuti on growth of Citrus rootstock seedlings and accumulation of nutrient elements in leaf tissues. M. Sc. dissertation, University of Limpopo, Sovenga, South Africa.
Pelinganga, O. M. and Mashela, P. W. (2012). Mean dosage stimulation range of allelochemicals from crude extracts of Cucumis africanus fruit for improved growth of tomato plant and suppressing Meloidogyne incognita numbers. J. Agric. Sci. 12: 8-12.
Proveda, J. Abril-Urias, P. and Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 11. doi.org/10.3389/fmicb.2020.00992.
Robinson, B. (1981). Leaf analysis for citrus. Citrus Subtrop. Fruit J. 571: 18-19.
Salisbury, F. B. and Ross, C. W. (2019). Plant Physiology. Wadsworth, Belmont, California.
Shadung, K. G. (2016). Quality protocols for Nemarioc-AL and Nemafric-BL phytonematicides. Ph. D. thesis, University of Limpopo, Sovenga, South Africa.
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-601.
Shomer-llan, A. and Waisel, Y. (1973). The effect of sodium chloride on the balance between the C3 and C4 carbon fixation pathways. Physiol. Plant. 29: 190-93.
Welch, R. M. and Shuman, L. (1995). Micronutrient nutrition of plants. CRC Crit. Rev. Plant Sci. 14: 49-82.
Zalesny, J. A., Zalesny, R. S. Jr, Wiese, A. H. and Hall, R. B. (2007). Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. Int. J. Phytorem. 9: 513-30.

Global Footprints