Response of nutrient elements in leaf tissues of sweet sorghum (Sorghum bicolor) to interactive effects of soil-drenched triterpenoid phytonematicides

DOI: 10.31830/2348-7542.2023.ROC-831    | Article Id: ROC-831 | Page : 68-72
Citation :- Response of nutrient elements in leaf tissues of sweet sorghum (Sorghum bicolor) to interactive effects of soil-drenched triterpenoid phytonematicides. Res. Crop. 24: 68-72
K. G. MALEKA, P. W. MASHELA AND K. M. POFU phatu.mashela@ul.ac.za
Address : Green Biotechnologies Research Centre, University of Limpopo, Private Bag X1106, Sovenga, 0727, Republic of South Africa
Submitted Date : 31-07-2022
Accepted Date : 16-02-2023


Root-knot (Meloidogyne species) nematode population densities on various crops, including sweet sorghum, were consistently decreased by three triterpenoid phytonematicides that are currently available as Nemarioc-AL, Nemafric-BL and Mordica. These compounds have chemically different active ingredients. The interaction between triterpenoid phytonematicides and the accumulation of nutrients in plant leaf tissues has not yet been studied, with the exception of Nemarioc-AL and Nemafric-BL. The objective of this study was to investigate the interactive effects of triterpenoid phytonematicides on accumulation of nutrient elements in leaf tissues of sweet sorghum under microplot conditions in Limpopo Province, South Africa during 2020 and 2021. Nemarioc-AL, Nemafric-BL and Mordica were laid in a 2 × 2 × 2 factorial experiment, respectively. The test treatments were arranged in a randomized complete block design, with eight replications, conducted on artificial microplots containing steam pasteurized soil. At 150 days after inoculation, the second order interaction (Nemarioc-AL × Nemafric-BL × Mordica) significantly (P=0.05) increased accumulation of Ca, K and Mg in leaf tissues of sweet sorghum, but without affecting P, Fe, Na and Zn. Relative to untreated control, second order interaction increased Ca, K and Mg by 206, 164 and 289%, respectively. In accordance with the density-dependent growth principles of entities exposed to allelochemicals, soil-drenched administration of triterpenoid phytonematicides dramatically modified the accumulation of nutritional components in leaf tissues of sweet sorghum.


Allelochemical phyonematicides sweet sorghum tetraterpenoid triterpenoid


Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A. and Qiu, S. X. (2005). Cucurbutacins and cucurbitane glycosides: Structures and biological activities. Nat. Prod. Rep. 22: 386-99.
Gheysen, G. and Fenoll, C. (2002). Gene expression in nematode feeding sites. Ann. Rev. Phytopathol. 40: 191-219.
Harris-Shultz, K. R., Davis, R. F., Knoll, J. E. Anderson, W. and Wang, H. (2017). Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and novel QTL for plant height in sweet sorghum maize. Molecules 105: 1522-28.
Hazarika, K., Goswami, R. K., Bharali, B., Kalita, P., Goswami, J. and Neog, B. (2022). Physiological performance of sweet sorghum in Assam. Res. Crop. 23: 556-61.
Liu, D. L., An, M., Johnson, I. R. and Lovett, J. V. (2003). Mathematical modelling of allellopathy. III. A model for curve-fitting allellochemical dose responses. Non-lin. Biol. Toxicol. Med. 1: 37-50.
Mabuka, K. (2013). Integrated management strategies for Meloidogyne species in Solanum lycopersicum production systems. Master dissertation, University of Limpopo Sovenga, South Africa.
Maiti, R. K. and Singh, V. P. (2019). A review on mechanisms of resistance in sorghum to drought, high and low temperature and salinity. Farm. Manage. 4: 19-37.
Mashela, P. W., De Waele, D., Z. Dube, Z., Khosa, M. C., Pofu, K. M., Daneel, M. S., Tefo, G. and Fourie, D. (2017). Alternative nematode management strategies. In: Nematology in South Africa: A View from the 21st Century, Fourie, H., Spaull, V. W., Jones, R. K., Daneel, M. S. and De Waele, D. (eds.) Springer Nature, Cham, Switzerland. pp. 151-81.
Mashela, P. W., Pofu, K. M. and Dube, Z. P. (2013). Post-application residual effect of 3 and 6% Nemafric-BL phytonematicide on growth and brix of sweet sorghum and population density of Meloidogyne species. Afr. Crop Sci. Conf. Proc. 11: 339-42.
Mashela, P. W., Shokoohi, E., Ndhlala, A. R., Pofu, K. M. and Raphaha, D. (2022). Bioremediation of cucurbitacins from cucurbitacin phytonematicides. In: Siddiqui, S., Megvansi, M. K. and Chaudhardy, K. K. Pesticides bioremediation (eds.). pp. 109-26.
Mathur, S., Umakanth, A. V., Tonapi, V. A., Sharma, R. and Sharma, M. K. (2017). Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol. Fuels 10: 146. do: 10.1186/s13068-017-0834-9.
Nyasha, N. E. (2021). Influence of pre-infectional and post-infectional nematode resistance mechanisms in crop rotation sequences on population densities of Meloidogyne species and soil health. Ph. D. thesis, University of Limpopo, Sovenga, Republic of South Africa.
Sathe, P. S., Adivarekar, R. V. and Pandit, A. B.  (2020). Study on valorization of coconut (Cocos nucifera) husk into biochar for soil amendment and its effect on sorghum (Sorghum bicolor). Crop Res. 55: 215-29.
Serrão, M. G., Menino, M. R., Martins, J. C., Castanheira, N., Lourenço, M. E., Januário, I., Fernades, M. L. and Concalves, M. C. (2012). Mineral leaf composition of sweet sorghum in relation to biomass and sugar yields under different nitrogen and salinity conditions. Comm. Soil Plant Sci. 43: 2376-88.
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality. Biometrics 52: 591-611.
Steyn, A. G. W., Smit, C. F., Du Toit, S. H. C. and Strasheim, C. (2003). Modern Statistics in Practice. Van Schaik, Pretoria.
Taiz, L. Z., Moller, I. M. and Murphy, A. (2017). Plant Physiology and Development. Armed, Porto Allegre.
Van Wyk, B. E. and Wink, M. (2014). Medicinal Plants of the World. Briza Publications, Pretoria.
Zygmunt, B. and Namiesnik, J. (2003). Preparation of samples of plant material for chromatographic analysis. J. Chromat. Sci. 39: 109-16.

Global Footprints