Loading...

Abiotic stresses impact on major cereals and adaptation options - A review

Citation :- Abiotic stresses impact on major cereals and adaptation options - A review. Res. Crop. 23: 896-915
DINKAR J. GAIKWAD, NITIN B. UBALE, APURBA PAL, SHWETA SINGH, MOHAMMED ANWAR ALI AND SAGAR MAITRA sagar.maitra@cutm.ac.in
Address : Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi-761211, Odisha, India

Abstract

The production of major field crops, namely, rice, wheat, and maize, is highly vulnerable to climatic factors and abiotic stresses. In the present era of climate change, abiotic factors emerged as limiting concerns for flourishing the growth and yield. Among the abiotic factors, temperature, soil moisture, salinity, elevated carbon dioxide levels and solar radiation are the prime concerns for affecting the productivity of major cereals. To combat with the situation, it is necessary to understand the adverse impacts of the abiotic factors on crops with special reference to major cereals. However, adaptation potions are much more important to ensure the agricultural sustainability of major cereals. The available literature reviewed suggested some adaptation options for major cereals to combat the ill effects of abiotic stresses which include  the change in variety and crop, manipulation in sowing or transplanting time, adoption of proper nutrient and water management, water conservation measures, adoption of the appropriate crop establishment methods and suitable cropping system. Further, the review article has made some recommendations and future perspectives highlighting the scope of further research for a climate-resilient production of foods for the future considering the adverse effects of the climate change.  
 

Keywords

Abiotic stress adaptation strategies adverse effects maize rice wheat

References

Akter, N. and Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agron. Sustain. Dev37: 1-17. https://doi.org/10.1007/s13593-017-0443-9.
Alhasnawi, A. N. (2019). Role of proline in plant stress tolerance: A mini review. Res. Crop. 20: 223-29.
Andrade, F. R., da Silva, G. N., Guimarães, K. C., Barreto, H. B. F., de Souza, K. R. D., Guilherme, L. R. G., Faquin, V. and Dos Reis, A. R. (2018). Selenium protects rice plants from water deficit stress. Ecotoxicol. Environ. Safety164: 562-70.
Aleminew, A. and Abera, M. (2020). Effect of climate change on the production and productivity of wheat crop in the highlands of Ethiopia: a review. Agric. Rev. 41: 34–42.
Ali, K., Zaghum, M. J., Ali, Z., Javaid M.U., Qayyum, M.U. and Raza, A. (2022a). Chilling stress effects on structure, function and development of different plant processes. Acta. Sci. Agric. 6: 50-58.
Ali, Y., Nawaz, T., Ahmed, N., Junaid, M., Kanwal, M., Hameed, F., Ahmed, S., Rafi Ullah, R., Shahab, M. and Fazli, S. (2022c). Maize (Zea mays) response to abiotic Stress. Maize Genetic Res. 1 : doi: 10.5772/intechopen.95713.
Ali, Z., Merrium, S. and Habib-ur-Rahman, M. (2022b). Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop—A review. Environ. Sci. Pollut. Res. 29: 30967-85.  https://doi.org/ 10.1007/s11356-022-18846-3.
António C., Päpke C., Rocha M., Diab H., Limami A. M. and Obata T. (2016). Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 170: 43-56.
Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J.C., Nogués, S., Araus, J.L., Martínez-Carrasco, R. and Pérez, P. (2011). Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J. Exp. Bot. 62:  3957-69.
Aslam, M., Fakher, B., Ashraf, M.A., Cheng, Y., Wang, B. and Qin, Y. (2022). Plant low-temperature stress: Signalingand response. Agronomy. 12: 702. https://doi.org/ 10.3390/agronomy12030702.
Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R. B., Kitano, H., Nagai, K. and Ashikari, M. (2014). Gibberellin biosynthesis and signal transduction is essential for internode elongation in deep water rice. Plant Cell Environ. 37: 2313-24.
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P. and Makowski, D. (2020). Impact of extreme weather conditions on European crop production in 2018. Phil. Trans. R. Soc. B.  375: 1–13. http://dx.doi.org/10.1098/rstb.2019.0510.
Bhadra, P., Maitra, S., Shankar, T., Hossain, A., Praharaj, S. and Tariq Aftab, T. (2022). Climate change impact on plants: Plant responses and adaptations. In: Plant Perspectives to Global Climate Changes, Elsevier Inc. Academic Press. Pp. 1–24. https://doi.org/10.1016/B978-0-323-85665-2.00004-2.
Bharath, P., Gahir, S. and Raghavendra, A.S. (2021). Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front. Plant Sci. 12: doi: 10.3389/fpls.2021.615114.
Bhattarai, K. and Bhattarai, B. (2021). Mechanism of DNA methylation and its role in biotic and abiotic stress response in plants: A review. Farm. Manage. 6: 39-46.
Bhusal, B., Poudel, M.R., Rishav, P., Regmi, R., Neupane, P., Bhattarai, K., Maharjan, B., Bigyan, K.C. and Acharya, S. (2021). A review on abiotic stress resistance in maize (Zea mays L.): effects, resistance mechanisms and management. J. Biol. Today's World 10: 1-3.
Billah, M., Aktar, S., Brestic, M., Zivcak, M., Khaldun, A. B. M., Uddin, M. S., Bagum, S. A., Yang, X., Skalicky, M., Mehari, T. G. and Maitra, S. (2021). Progressive genomic approaches to explore drought-and salt-induced oxidative stress responses in plants under changing climate. Plants10: doi.org/10.3390/plants10091910.
Chen, Y., Vogel, A., Wagg, C., Xu, T., Iturrate-Garcia, M., Scherer-Lorenzen, M., Weigelt, A., Eisenhauer, N. and Schmid, B.  (2022a). Drought-exposure history increases complementarity between plant species in response to a subsequent drought. Nat. Commun13: https://doi.org/10.1038/s41467-022-30954-9.
Chen, Y., Zhang, Z. and Tao, F. (2018). Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0ºC. Earth Syst. Dynam. 9: 543-62. https://doi.org/10.5194/esd-9-543-2018.
Chen, Y., Wei, Z., Wan, H., Zhang, J., Liu, J. and Liu, F. (2022). CO2 Elevation and nitrogen supply alter the growth and physiological responses of tomato and barley plants to drought stress. Agronomy. 12:  https://doi.org/ 10.3390/agronomy12081821.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J. and Wehner, M. (2013). Long-term climate change: Projections, committments and irreversibility. Physic. Sci. Basis. 12: 1029-36.
Das, P., Pramanick, B., Goswami, S. B., Maitra, S., Ibrahim, S. M., Laing, A. M. and Hossain, A. (2021). Innovative land arrangement in combination with irrigation methods improves the crop and water productivity of rice (Oryza sativa L.) grown with okra (Abelmoschus esculentus L.) under raised and sunken bed systems. Agronomy. 11: doi: org/10.3390/agronomy11102087.
De Jager, T. L., Cockrell A. E. and Du Plessis, S. S. (2017). Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 996:15-23. doi: 10.1007/978-3-319-56017-5_2. 
de Oliveira Lima, G. V., Yumi Oki, Y., Bordignon, L., Siqueira, W. K., Marcel Giovanni Costa França, M. G. C., Daniela Boanares, D., Augusto César Franco, A. C. and Fernandes, G. W. (2022). Interaction between increased CO2 and temperature enhance plant growth but do not affect millet grain production. Acta. Sci. Agron. 44: doi: 10.4025/actasciagron.v44i1.53515.
Dekhil, M. A., Ibrahim, M. F., Saudy, H. S. and Zaghloul, S. A. (2020). Effect of selenium on salt tolerance in maize plants. J. Environ. Sci. 49: 91-124.
Dietz, K. J., Zörb, C. and Geilfus, C. M. (2021). Drought and crop yield. Plant Biol. 23: 881–93.
Dong, J., Gruda, N., Lam, S. K., Li, X. and Duan, Z. (2018). Effects of elevated CO2 on nutritional quality of vegetables: A Review. Front. Plant Sci. 9: doi: org/10.3389/ fpls.2018.00924.
dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F. and Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses2: 113-35. https:// doi.org/10.3390/stresses2010009.
Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B. and Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 146: https://doi.org/10.1016/j.plaphy.2019.11.003.
Ducousso -Détrez, A., Fontaine, J., Lounès-Hadj Sahraoui, A. and Hijri, M. (2022). Diversity of phosphate chemical forms in soils and their contributions on soil microbial community structure changes. Microorganisms. 10: https://doi.org/10.3390/ microorganisms10030609.
El Haddad, N., Choukri, H., Ghanem, M.E., Smouni, A., Mentag, R., Rajendran, K., Hejjaoui, K., Maalouf, F. and Kumar, S. (2022). High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in lentil. Plants. 11: https://doi.org/10.3390/ plants11010095.
Eom, S. H., Ahn, M. A., Kim, E., Lee, H. J., Lee, J. H., Wi, S. H., Kim, S. K., Lim, H. B. and Hyun, T. K. (2022). Plant response to cold Stress: Cold stress changes antioxidant metabolism in heading type Kimchi cabbage (Brassica rapa L. ssp. Pekinensis). Antioxidants. 11: doi: org/10.3390/antiox11040700.
Epule, T.E., Chehbouni, A. and Dhiba, D. (2022). Recent patterns in maize yield and harvest area across Africa. Agron. 12: 374. https://doi.org/10.3390/ agronomy12020374.
Evans, J.R. (2013). Improving photosynthesis. Plant Physiol. 162: 1780-93. doi: 10.1104/pp.113.219006. 
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S. and Saud, S. (2017). Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 8:  https://doi. org/10.3389/fpls.2017.01147 .
FAO (2015). Climate change and food security: risks and responses. Food and Agriculture Organization of the United Nations.  98https://www.fao.org/3/i5188e/I5188E.pdf. (Accessed 29 August 2022).
Farooq, M., Park, J. R., Jang, Y. H., Kim, E. G. and Kim, K. M. (2021). Rice cultivars under salt stress show differential expression of genes related to the regulation of Na+/K+ balance. Front. Plant Sci. 12: doi: org/10.3389/fpls.2021.680131.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009).  Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev.  29: 185-212.
Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., Poorter, H., Postma, J. A. and Adams, T. S. (2021). A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol232: 973-1122.
Fukao, T., arrera-Figueroa, B. E., Juntawong, P. and Peña-Castro, J. M. (2019). Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front Plant Sci. 22: doi: 10.3389/fpls.2019.00340. 
Gautam R.C. and Bana R.S. (2014). Drought in India: Its impact and mitigation strategies-A review. Indian J. Agron.  59: 179-90.
Ghosh, D., Brahmachari, K., Das, A., Hassan, M. M., Mukherjee, P. K., Sarkar, S., Dinda, N. K., Pramanick, B., Moulick, D., Maitra, S. and Hossain, A. (2021). Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-maize-green gram cropping system. Agron. 11: doi.org/10.3390/ agronomy11010166.
Githui, F., Beverly, C., Aiad, M., McCaskill, M., Liu, K. and Harrison, M. T. (2022).  Modelling waterlogging impacts on crop growth: A Review of aeration stress defin ition in crop models and sensitivity analysis of APSIM. Int. J. Plant Biol. 13: 180-200. https://doi.org/10.3390/ ijpb13030017.
Goswami, S., Kar, R. K., Paul, A. and Dey, N. (2017). Genetic potentiality of indigenous rice genotypes from eastern India with reference to submergence tolerance and deepwater traits. Curr. Plant Biol. 11: 23-32.
Gouache, D., Le Bris, X., Bogard, M., Deudon, O., Pagé, C. and Gate, P. (2012). Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. Euro J Agron. 39: 62-70. doi.org/ 10.1016/j.eja.2012.01.009.
Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M., Hosman, K. P., Riggs, J. S., Sluss, D. and Wullschleger, S. D. (2006). Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res. 111:  doi: org/ 10.1029/2006JD007161.
Haj-Amor, Z., Araya, T., Kim, D. G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Hojeong Kang, H., Jhariya, M.K., Banerjee, A. and Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci.  Total Environ. 843:  doi.org/10.1016/ j.scitotenv.2022.156946.
Haque, M. S., Kjaer, K. H., Rosenqvist, E., Sharma, D. K. and Ottosen, C. O. (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environ. Exp. Bot. 99: 1-8.
Hashemipetroudi, S. H., Ahmadian, G. and Fatemi, F. (2022). Ion content, antioxidant enzyme activity and transcriptional response under salt stress and recovery condition in the halophyte grass Aeluropus littoralisBMC Res. Notes 15:  doi.org/10.1186/s13104-022-06090-4.
Hitz, T., Hartung, J., Graeff-Honninger, S. and Munz, S. (2019). Morphological response of soybean (Glycine max (L.) Merr.) cultivars to light intensity and red to far-red ratio. Agronomy 9: doi: org/10.3390/agronomy9080428.
Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S. and Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6: doi.org/10.3390/agronomy6040054.
Hochman, Z., Holzworth, D. and Hunt, J. R. (2009). Potential to improve on-farm wheat yield and WUE in Australia. Crop Pasture Sci. 60: 708-16.
Hossain, A., Maitra, S., Pramanick, B., Bhutia, K. L., Ahmad, Z., Moulik, D., Syed, M. A., Shankar, T., Adeel, M., Hassan, M. M. and Aftab, T. (2022a). Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In: Aftab, T. and Roychoudhury, A. (Eds.) Plant Perspectives to Global Climate Changes. Pp. 471-518. https://doi.org/10.1016/B978-0-323-85665-2.00011-X.
Hossain, A., Mottaleb, K. A., Maitra, S., Mitra, B., Ahmed, S., Sarker, S., Chaki, A. K. and Laing, A. M. (2021d). Conservation agriculture: Next-generation, climate resilient crop management practices for food security and environmental health. In: A Sustainable Approach for Soil Health and Food Security, (Eds. Aftab, T. et al.). Pp. 585-609.
Hossain, A., Pamanick, B., Venugopalan, V. K., Ibrahimova, U., Rahman, M. A., Siyal, A. L., Maitra, S., Chatterjee, S. and Aftab, T. (2022b). Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. In:  Emerging Plant Growth Regulators in Agriculture, (Eds. Naeem M and Aftab, T.), Academic Press. Pp.1-72.
Hossain, A., Pramanick, B., Bhutia, K. L., Ahmad, Z., Moulick, D., Maitra, S., Ahmad, A. and Aftab, T. (2021d). Emerging roles of osmoprotectant glycine betaine against salt-induced oxidative stress in plants: A major outlook of maize (Zea mays L.).  Front. Plant-Soil Interaction: Molecular Insights into Plant Adaptation (Eds. Tariq Aftab Khalid Rehman Hakeem), Academic Press. Pp. 567-87.
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P.,   Shankar, T., Chaki, A. K., El Sabagh, A. and Islam, T. (2021c). Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 11: https://doi.org/ 10.3390/agronomy11020241.
Huchzermeyer, B., Menghani, E., Khardia, P. and Shilu, A. (2022). Metabolic Pathway of Natural Antioxidants, Antioxidant Enzymes and ROS Providence. Antioxidants. 11: https://doi.org/ 10.3390/antiox11040761.
Huseynova, I. M., Rustamova, S. M., Suleymanov, S. Y., Aliyeva, D. R., Mam-madov, A. C. and Aliyev, J. A. (2016). Drought-induced changes in pho-tosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth. Res.  130: 215-23.
IPCC (2001). Climate Change: Impacts, Adaptation and Vulnerability. The Intergovernmental Panel on Climate Change. http://www.cambridge.org. (Accessed 29 August 2022)
IPCC (2007). Summary for policymakers. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The Phys. Sci. Basis. Cambridge University Press.
IPCC (2018). Global Warming of 1.5°C. An IPCC Special Report. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press.
IPCC (2022). Summary for Policymakers, Pörtner, H. O. et al. (eds.). (2022). Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Pp. 3–33. doi:10.1017/9781009325844.001.
IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Eds. Cambridge University Press. Pp. 582.
Iqbal, M., Hussain, I., Liaqat, H., Ashraf, H. M., Rasheed, R. and Rehman, A. U. (2015). Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol. Biochem. 94: 95–103.
Isayenkov, S.V. and Maathuis, F. J. M. (2019). Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 10: 80. doi: 10.3389/fpls.2019.00080.
Ismail, A. M., Johnson, D. E., Ella, E. S., Vergara, G. V. and Baltazar, A. M. (2012). Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants 2012: doi: 10.1093/aobpla/pls019. 
Dušek, J., E, Dařenová, E., Pavelka, M. and   Marek, M. V. (2020). Methane and carbon dioxide release from wetland ecosystems, In: Climate Change and Soil Interactions (Eds. Vara Prasad, M. N. and Pietrzykowski, M.), Elsevier, Pp. 509-553. doi.org/ 10.1016/B978-0-12-818032-7.00019-9.
Jajic, I., Sarna, T. and Strzalka, K. (2015). Senescence, stress, and reactive oxygen species. Plants 4: 393-411.
Jiang, J. M., Jin, L., Huang, L. and Wang, W. T. (2022). The future climate under different CO2 emission scenarios significantly influences the potential distribution of Achnatherum inebrians in China. Sustainability 14: doi.org/10.3390/ su14084806.
Jiang, R., He, W., He, L., Yang, J. Y., Qian, B., Zhou, W. and He, P. (2021). Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Sci. Rep. 11doi.org/10.1038/s41598-020-79988-3.
Jones, P. G. and Thornton, P. K. (2003). The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 13: 51-59.
Karlova, R., Boer, D., Hayes, S. and Testerink, C. (2021). Root plasticity under abiotic stress. Plant Physiol. 187: 1057-70.
Kaur, H., Manna, M., Thakur, T., Gautam, V. and Salvi, P. (2021). Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol. Plant 171: 833-48.
Kenawy, E., Rashad, M., Hosny, A., Shendy, S., Gad, D. and Saad-Allah, K.M. (2022). Enhancement of growth and physiological traits under drought stress in Faba bean (Vicia faba L.) using nanocomposite. J. Plant Interact. 17: 404-18. doi: 10.1080/17429145.2022.2038293.
Koza, N. A., Adedayo, A. A., Babalola, O. O. and Kappo, A. P. (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10: doi.org/10.3390/ microorganisms10081528.
Krämer, K., Brock, J. and Heyer, A. G. (2022). Interaction of nitrate assimilation and photorespiration at elevated CO2. Front. Plant Sci. 13: doi: 10.3389/fpls.2022.897924.
Kuanar, S. R., Ray, A., Sethi, S. K., Chattopadhyay, K. and Sarkar, R. K. (2017). Physiological basis of stagnant flooding tolerance in rice. Rice Sci. 24: 73-84.
Kul, R., Ekinci, M., Turan, M., Ors, S. and Yildirim, E. (2020). How abiotic stress conditions affects plant roots.  Plant Roots. Pp. 6-10. doi: 10.5772/intechopen.95286.
Kulczycki, G., Sacała, E., Chohura, P. and Załuska, J. (2022). Maize and wheat response to drought stress under varied sulphur fertilisation. Agronomy 12: doi.org/ 10.3390/agronomy12051076.
Kumari, S., Chhillar, H., Chopra, P., Khanna, R. R., M. and Iqbal R. Khan, I. R. (2021). Potassium: A track to develop salinity tolerant plants. Plant Physiol. Biochem. 167: 1011-23. doi.org/10.1016/j.plaphy.2021.09.031.
Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Chandran, M. A. S., Gopinath, K. A., Venkatesh, G., Yadav, S. K., Singh, V. K. and Awasthi, N. K. (2022). Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci.  23: doi.org/10.3390/ijms23158519.
Kuroha, T., Nagai, K., Gamuyao, R., Wang, D. R., Furuta, T. and Nakamori, M. (2018). Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361: 181-86. doi: org/10.1126/science.aat1577.
Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R. and Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140: 779-90.
Li, X., Takahashi, T., Suzuki, N. and Kaiser, H. M. (2011). The impact of climate change on maize yields in the United States and China. Agric. Syst. 104: 348-53. doi.org/10.1016/j.agsy.2010.12.006.
Li, Z., Liu, J., Kuang, M., Zhang, C., Ma, O., Huang, L., Wang, H., Fan, S. and Peng, J. (2022). Improvement of plant tolerance to drought stress by cotton tubby-like protein 30 through stomatal movement regulation. J. Adv. Res. 42: 55-67. doi.org/10.1016/j.jare.2022.06.007.
Liang, W., Ma, X., Wan, P. and Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun.  495: 286-91.
Lin, C., Zhu, T., Ogorek, L.L.P., Wang, Y., Sauter, M. and Pedersen, O.  (2022). The pyramiding of three key root traits aid breeding of flood-tolerant rice. Plants.  11: doi. org/10.3390/ plants11152033.
Lobo, A. K. M., Catarino, I. C. A., Silva, E. A., Centeno, D. C. and Domingues, D. S. (2022). Physiological and molecular responses of woody plants exposed to future atmospheric CO2 levels under abiotic stresses. Plants 11: doi.org/10.3390/ plants11141880.
Lorenzo, C. D., Iserte, J. A., Lamas, M. S., Antonietti, M. S., Gagliardi, P. G., Hernando, C. E., Dezar, C. A. A., Vazquez, M., Casal, J. J. and Yanovsky, M. J. (2019). Shade delays flowering in Medicago sativa. Plant J. 99: 7–22.
Loreti, E. and Perata, P. (2020). The many facets of hypoxia in plants. Plants 9: doi: 10.3390/plants9060745.
Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubi ´nska-Mieli ´nska, S. and Piernik, A. (2021). Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy 11: doi.org/10.3390/ agronomy11030435.
Ma, X., Su, Z. and Ma, H. (2020).  Molecular genetic analyses of abiotic stress responses during plant reproductive development. J. Exp. Bot. 71: 2870-85. doi.org/10.1093/jxb/eraa089.
Ma, Y., Dias, M.C. and Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11: doi: 10.3389/fpls.2020.591911.
Mahmood, T., Iqbal, M. S., Li, H., Nazir, M. F., Khalid, S., Sarfaraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S. M., Dev, W., Iqbal, Z., Zhao, P., Hu, G. and Du, X. (2022). Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biol22doi.org/10.1186/s12870-022-03724-4.
Maitra, S., Pramanick, B., Dey, P., Bhadra, P., Shankar, T. and Anand, K. (2021b). Thermotolerant Soil Microbes and Their Role in Mitigation of Heat Stress in Plants. In: Yadav A.N. (eds) Soil Microbiomes for Sustainable Agriculture, Sustainable Development and Biodiversity. Springer Nature, Pp. 203-242. doi.org/10.1007/978-3-030-73507-48.
Maitra, S. and Pine, S. (2020). Smart irrigation for food security and agricultural sustainability. Indian J. Nat. Sci. 10: 20435–39.
Maitra, S., Bhadra, P., Yadav, A.N., Palai, J. B., Jena, J. and Shankar, T. (2021a). The Omics Strategies for Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants. In: A. N. Yadav (ed.), Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity. Springer Nature, Pp. 315-377. doi.org/10.1007/978-3-030-73507-4_12.
Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J. B., Shah, M. M. R., Barek, V., Ondrisik, P., Skalický, M. and Hossain, A. (2021d). Bioinoculants—Natural biological resources for sustainable plant production. Microorganisms 10: doi.org/10.3390/microorganisms10010051.
Maitra, S., Hossain, A., Banerjee, P. and Bhadra, P. (2021c). The role of phytohormones in heat stress tolerance in plants.  In: Plant Growth Regulators for Climate-Smart Agriculture (Eds. Fahad, S., Sönmez, O., Saud, S., Wang, D., Chao Wu, C., Adnan, M. and Turan, V.). Pp.145-64.
Manepalli, S.B., Tomar, S., Gaikwad, D.J., Maitra, S. (2022) Abiotic stress signaling in plants and transgenic technology as a triumph: A review. J. Applied Biol. Biotechnol. 10: 5-13. doi: 10.7324/JABB.2022.100501.
Mangaraj, S., Paikaray, R. K., Maitra, S., Pradhan, S. R., Garnayak, L. M., Satapathy, M., Swain, B., Jena, S., Nayak, B., Shankar, T. and Alorabi, M. (2022). Integrated nutrient management improves the growth and yield of rice and greengram in a rice—greengram cropping system under the coastal plain agro-climatic condition. Plants 11: doi: 10.3390/plants11010142.
Markulj Kulundži´c, A., Viljevac Vuleti´c, M., Matoša Koˇcar, M., Antunovi´c Duni´c, J., Varga, I., Zduni´c, Z., Sudari´c, A., Cesar, V. and Lepeduš, H. (2022). Effect of elevated eemperature and excess light on photosynthetic efficiency, pigments, and proteins in the field-grown sunflower during afternoon. Hortic. 8: doi.org/10.3390/ horticulturae8050392.
Mattos, L. M. and Moretti, C. L.  (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enz. Eng. 5: doi: 10.4172/2329-6674.1000136.
Mauser, H., King, W. A., Gready, J. E. and Andrews, T. J. (2001). CO2 fixation by Rubisco: Computational dissection of the key steps of carboxylation, hydration, and C-C bond cleavage. J. Am. Chem. Soc. 123: 10821-29.
Midya, A., Saren, B. K., Dey, J. K., Maitra, S., Praharaj, S., Gaikwad, D. J., Gaber, A., Alsanie, W.F., Hossain, A. (2021a). Crop establishment methods and integrated nutrient management improve: Part I. Crop performance, water productivity and profitability of rice (oryza sativa l.) in the lower Indo-Gangetic Plain, India. Agronomy. 11: doi.org/ 10.3390/agronomy11091860.
Midya, A., Saren, B. K., Dey, J. K., Maitra, S., Praharaj, S., Gaikwad, D. J., Gaber, A., Alhomrani, M., Hossain, A. (2021b) Crop establishment methods and integrated nutrient management improve: Part II. Nutrient uptake and use efficiency and soil health in rice (Oryza sativa L.) field in the lower Indo-Gangetic Plain, India. Agronomy 11: doi.org/10.3390/ agronomy11091894.
Mitsuda, N., Ohme-Takagi, M., Yanagisawa, S., Yamasaki, M., Yokoyama, R., Nishitani, K., Mochizuki, T., Tamiya, G., McCouch, S. R. and Ashikari, M. (2018). Ethylene-gibberellin signalling underlies adaptation of rice to periodic flooding. Science 361: 181-86.
Mohanta, S., Banerjee, M., Malik, G. C., Shankar, T., Maitra, S., Ismail, I. A., Dessoky, E. S., Attia, A. O. and Hossain, A. (2021). Productivity and profitability of kharif rice are influenced by crop establishment methods and nitrogen management in the lateritic belt of the subtropical region. Agronomy 11: doi.org/10.3390/agronomy11071280.
Muhammad, Aslam. M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W., Zhang, Q. (2022). Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci.  23: doi.org/ 10.3390/10.3390/ijms23031084.
Mustafa, T., Sattar, A., Sher, A., Ul-Allah, S., Ijaz, M., Irfan, M., Butt, M. and Cheema, M. (2021). Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms. Sci. Rep. 11: doi: 10.1038/s41598-021-02594-4.
Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A. and Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotox. Environ. Saf. 113: 191-200.
Noble, I. R., Huq, S., Anokhin, Y. A., Carmin, J., Goudou, D., Lansigan, F. P., Osman-Elasha, B. and Villamizar, A. (2014). Adaptation needs and options. Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.  Pp.833-68.
Ogorek, L. L. P., Pellegrini, E. and Pedersen, O. (2022). Novel functions of the root barrier to radial oxygen loss—Radial diffusion resistance to H2 and water vapour. New Phytol. 231: 1365-76.
Olivier, J. G. J. and Peters, J. A. H. W. (2020). Trends in global CO2 and total greenhouse gas emissions, 2019 Report, PBL Netherlands Environmental Assessment Agency, Publication number 4068, The Hague, p.70, Available online: https://www. pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-co2-and-total-greenhouse-gas-emissions-2019-report_4068.pdf (Accessed 16 May, 2022)
Ologundudu, A. F., Adelusi, A. A. and Akinwale, R. O. (2014). Effect of salt stress on germination and growth parameters of rice (Oryza sativa L.).  Notulae Sci. Biol. 6: 237–43. doi.org/10.15835/nsb629163.
Pan, J., Sharif, R., Xu, X. and Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 11: doi: 10.3389/ fpls.2020.627331.
Panda, D. and Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 28: 43-57. doi.org/10.1016/j.rsci.2020.11.006.
Parkash, V. and Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12: doi:10.3390/su12103945.
Parmesan, C. and Hanley, M. E. (2015). Plants and climate change: complexities and surprises. Ann. Bot. 116: 849-64. doi.org/10.1093/aob/mcv169.
Páscoa, P., Gouveia, C. M., Russo, A. and Trigo, R. M. (2017). The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int. J. Biometeorol. 61: 439-51. doi.org/10.1007/s00484-016-1224-x.
Pattanayak, S., Jena, S., Das, P., Maitra, S., Shankar, T., Praharaj, S., Mishra, P., Mohanty, S., Pradhan, M., Swain, D. K. and Pramanick, B. (2022). Weed management and crop establishment methods in rice (Oryza sativa L.) influence the soil microbial and enzymatic activity in sub-tropical environment. Plants 11: doi.org/10.3390/ plants11081071.
Petruccelli, R., Bartolini, G., Ganino, T., Zelasco, S., Lombardo, L., Perri, E., Durante, M. and Bernardi, R. (2022). Cold stress, freezing adaptation, varietal susceptibility of Olea europaea L.: A review. Plants. 11: doi.org/10.3390/ plants11101367.
Pons, C. and Müller, C. (2022). Impacts of drought stress and mycorrhizal inoculation on the performance of two spring wheat cultivars. Plants 11: doi.org/10.3390/ plants11172187.
Pramanick, B. Dubey, R., Kesarwani, A., Bera, A., Bhutia, K.L., Kumar, M., and Maitra, S. (2023). Advancement in mitigating the effects of waterlogging stress in wheat. In: Abiotic Stresses in Wheat. https://doi.org/10.1016/B978-0-323-95368-9.00013-8.
Prasad, G., Singh, S. M., Patel, C., Nema, A. K., Singh, R. S., Yadav, M. K. and Singh, K. K. (2018). Impact of temperature and solar radiation on wheat crop for Varanasi region of Uttar Pradesh. Vayu Mandal 44:  47-52.
Pukalchik, M., Kydralieva, K., Yakimenko, O. and Terekhova, V. (2020). Effect of organic substances on wheat (Triticum spp.) productivity and soil enzyme functional stability under drought stress conditions. Res. Crop. 21: 210-14.
Qi, F. and Zhang, F. (2020). Cell cycle regulation in the plant response to stress. Front. Plant Sci. 10: doi: 10.3389/fpls.2019.01765.
Qu, M., Chen, G., Bunce, J.A., Zhu, J.A.X. and Sicher, R.C. (2018). Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2. Sci. Rep. 8: doi. org/10.1038/s41598-018-26283-x.
Ramamoorthy, P., Bheemanahalli, R., Meyers, S. L., Shankle, M. W. and Reddy, K. R. (2022). Drought, low nitrogen stress, and ultraviolet-B radiation effects on growth, development, and physiology of sweet potato cultivars during early season. Genes. 13: doi.org/10.3390/ genes13010156.
Rastogi, R. P., Singh, S. P., Incharoensakdi, A., Häder, D. P. and Sinha, R. P. (2014). Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. South Afr. J. Bot. 90: 163-69. doi.org/10.1016/j.sajb.2013.11.006.
Ravindra, C. G., Gopinath, K. A., Ratna Kumar, P., Bhaskar, S., Singh, V. K., Deepika, S., Visha Kumari, V., Sridhar, K. B., Narsimlu, B., Raj Kumar, B. and Rasul, A. (2021). Management of major abiotic stresses in field crops. Indian J. Agron. 66: 258-78.
Ren, B., Zhang, J., Li, X., Fan, X., Dong, S., Liu, P. and Zhao, B. (2014). Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian J. Plant Sci. 94: 23-31.
Ruiz, S., Koebernick, N., Duncan, S., Fletcher, D. M., Scotson, C., Boghi, A., Marin, M., Bengough, A. G., George, T. S., Brown, L. K., Hallet, P. D. and Roose, T. (2020). Significance of root hairs at the field scale–modelling root water and phosphorus uptake under different field conditions. Plant Soil 447: 281-304. doi.org/10.1007/ s11104-019-04308-2.
Rychter, A. M. (2006). Antioxidants and reactive oxygen species in plants. Ann. Bot. 98: doi: 10.1093/aob/mcl200.
Saddique, Q., Cai, H., Xu, J., Ajaz, A., He, J., Yu, Q., Wang, Y., Chen, H., Khan, M. I., Liu, D. L. and He, L. (2020). Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitig. Adapt. Strateg. Glob. Change25: 1523-43. doi.org/10.1007/s11027-020-09935-0.
Sah, S. K., Reddy, K. R and Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 7: doi: 10.3389/fpls.2016.00571.
Saha, I., Hasanuzzaman, M., Dolui, D., Sikdar, D., Debnath, S. C. and Adak, M. K. (2021). Silver–nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.). Environ. Exp. Bot. 181: doi: 10.1016/j.envexpbot.2020.104276.
Sasidharan, R., and Voesenek, L. A. (2015). Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169: 3-12. doi: 10.1104/pp.15.00387.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E. and Hauck, M., Hajek, P. (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45: 86-103.
Schumacher, D. L., Keune, J., Dirmeyer, P. and Miralles, D. G. (2022). Drought self-propagation in drylands due to land-atmosphere feedbacks. Nat Geosci. 15: 262-68. doi: 10.1038/s41561-022-00912-7. 
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H. and Battaglia, M. L. (2021).  Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants  10: doi: 10.3390/ plants10020259.
Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D., Overpeck, J. T., Taboada, M. A., Fischlin, A., Moreno, J. M. and Root, T. (2015). Terrestrial and inland water systems.  In: Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. Cambridge University Press. Pp. 271-60.
Shankar, T., Malik, G. C., Banerjee, M., Dutta, S., Maitra, S., Praharaj, S., Sairam, M., Kumar, D. S., Dessoky, E. S., Hassan, M. M. and Ismail, I. A. (2021). Productivity and nutrient balance of an intensive rice–rice cropping system are influenced by different nutrient management in the red and lateritic belt of West Bengal, India. Plants 10: doi: 10.3390/plants10081622.
Shankar, T., Malik, G. C., Banerjee, M., Dutta, S., Praharaj, S., Lalichetti, S., Mohanty, S., Bhattacharyay, D., Maitra, S., Gaber, A., Das, A. K., Sharma, A. and Hossain, A.  (2022) Prediction of the effect of nutrients on plant parameters of rice by artificial neural network. Agronomy.  12 :  doi:10.3390/agronomy12092123
Shanker, A. K., Gunnapaneni, D., Bhanu, D., Vanaja, M., Lakshmi, N. J., Yadav, S. K., Prabhakar, M. and Singh, V. K. (2022). Elevated CO2 and water stress in combination in plants: Brothers in arms or partners in crime? Biology 11: doi.org/10.3390/ biology11091330.
Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D., and Singsaas, E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30: 1035-40.
Sheth, B. P. and Thaker, V. S. (2014). In silico analyses of Rubisco enzymes from different classes of algae. Int. Res. J. Biol. Sci. 3: 1-17.
Shi, W., Yang, J., Kumar, R., Zhang, X., Impa, S. M., Xiao, G. and Krishna Jagadish, S. V. (2022b). Heat stress during gametogenesis irreversibly damages female reproductive organ in rice. Rice 15doi.org/10.1186/s12284-022-00578-0.
Shi, Y., Ke, X., Yang, X., Liu, Y. and Hou, X. (2022a). Plants response to light stress. J. Genet. Genom. 49: 735-47. doi.org/10.1016/j.jgg.2022.04.017.
Shrivastava P and Kumar R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22:123-131. doi: 10.1016/j.sjbs.2014.12.001. 
Singh, A., Septiningsih, E. M., Balyan, H. S., Singh, N. K. and Rai, V. (2017). Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant Cell Physio. 58: 185-97.
Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S., Sinhmar, Y., Kumar, D. and Sharma, A. (2022). Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants 11: doi.org/10.3390/ plants11192525.
Soora, N. K., Singh, A. K., Agarwal, P. K., Rao, V. U. M. and Venkateswarlu, B. (2012). Climate change and Indian agriculture: Impact, adaptation and vulnerability - salient achievements from ICAR network project. IARI Publication, New Delhi, India.
Stavi, I., Thevs, N. and Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 9: doi: 10.3389/fenvs.2021.712831.
Sui, X. L., Mao, S. L., Wang, L.H., Zhang, B. X. and Zhang, Z. X. (2012). Effect of low light on the characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper. J. Int. Agri. 11: 1633-43. doi.org/10.1016/S2095-3119(12)60166-X.
Szulejko, J. E., Kumar, P., Deep, A. and Ki-Hyun Kim, K. H. (2017). Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos. Pollut. Res. 8: 136-40. doi.org/ 10.1016/j.apr.2016.08.002.
Tanaka, A., Takahashi, K., Masutomi, Y., Hanasaki, N., Hijioka, Y., Shiogama, H. and Yamanaka, Y. (2015). Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change. Sci. Rep. 5: doi: 10.1038/srep14312.
Tang, W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J. and Wu, X. (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants 11: doi.org/ 10.3390/ plants11131688.
Taratima, W., Chomarsa, T. and Maneerattanarungroj, P. (2022). Salinity stress response of rice (Oryza sativa L. cv. Luem Pua) Calli and seedlings. Science doi.org/10.1155/2022/5616683.
Teerarat, U., Janprasert, K. and Pongprayoon, W. (2017). Physiological responses and clustering of four aromatic rice cultivars to NaCl salt stress. Burapha Sci. J. 22: 233-47.
Teo, H. M., Aziz A., Wahizatul A. A., Bhubalan, K., Siti Nordahliawate, M. S., Muhamad Syalie, C. I. and Lee Chuen, Ng (2022).  Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review. Microorganisms 10: doi.org/10.3390/ microorganisms10030657.
Tian, J., Tian, L., Chen, M., Chen, Y. and Wei, A. (2022). Low temperature affects fatty acids profiling and key synthesis genes expression patterns in Zanthoxylum bungeanum Maxim. Int. J. Mol. Sci. 23: doi.org/10.3390/ ijms23042319.
Tigchelaara, M., Battistia, D. S., Naylorb, R. L. and Ray, D. K. (2018). Future warming increases probability of globally synchronized maize production shocks.  PNAS 115: 6644-49. doi.org/10.1073/pnas.1718031115.
Tomar, S., Babu, M. S., Gaikwad, D. J., and Maitra, S. (2021). A review on molecular mechanisms of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) against abiotic stresses with special reference to drought and heat. Int. J. Agric, Environ. Biotechnol. 14: 215-22. doi: 10.30954/0974-1712.02.2021.15
Tramblay, Y. and Seguí, P. Q. (2022). Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme. Nat. Hazards Earth Syst. Sci. 22: 1325-34. doi.org/10.5194/nhess-22-1325-2022.
Tun Oo, A., Van Huylenbroeck, G. and Speelman, S. (2020). Measuring the economic impact of climate change on crop production in the dry zone of Myanmar. A Ricardian approach. Climate 8: doi.org/10.3390/cli8010009.
Upadhyay, R. K. (2018). Oxidative injury and its detoxification in rice plants after submergence stress. Proc. Natl. Acad. Sci. Ind. Sect B: Biol. Sci. 88: 15-21.
Ureta, C., González, E. J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A. and Álvarez-Buylla, E. R. (2020). Maize yield in Mexico under climate change. Agric. Sys. 177:  doi.org/ 10.1016/j.agsy.2019.102697.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Wahid, A., Gelani, S., Ashraf, M. and Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199–23.
Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A. and Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by Thiourea. Front. Plant Sci. 10: doi.org/10.3389/fpls.2019.01336.
Wu, J., Nadeem, M., Galagedara, L., Thomas, R. and Cheema, M. (2022). Effects of chilling stress on morphological, physiological, and biochemical attributes of silage corn genotypes during seedling establishment. Plants 11: doi.org/10.3390/ plants11091217.
Xu, H., Hassan, M. A., Sun, D., Wu, Z., Jiang, G., Liu, B., Ni, Q., Yang, W., Fang, H., Li, J. and Chen, X. (2022a). Effects of low temperature stress on source–sink organs in wheat and phosphorus mitigation strategies. Front. Plant Sci. 13: doi: 10.3389/fpls.2022.807844.
Xu, H., Huang, C., Jiang, X., Zhu, J., Gao, X. and Yu, C. (2022b). Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae 8: doi.org/10.3390/ horticulturae8060494.
Xu, Y., Chu, C. and Yao, S. (2021). The impact of high-temperature stress on rice: Challenges and solutions. The Crop J. 9: 963-76. doi.org/10.1016/j.cj.2021.02.011.
Yadav, S. K. (2011). Cold stress tolerance mechanisms in plants. Sustain. Agric. 2: doi.org/10.1007/978-94-007-0394-0_27.
Yang, C., Fraga, H., van Ieperen, W., Trindade, H. and Santos, J. A. (2019). Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Climatic Change  154: 159-78. doi.org/ 10.1007/s10584-019-02419-4.
Zaman, A., Zaman, P. and Maitra, S. (2017). Water resource development and management for agricultural sustainability. J. Appl. Adv. Res. 2 : 73-77.
Zellner, W., Tubaña, B., Rodrigues, F. A. and Datnoff, L. E. (2021). Silicon’s role in plant stress reduction and why this element is not used routinely for managing plant health. Plant Dis. 105: 2033-49.
Zhang, J., Zhou, H., Zhou, M., Ge, Z., Zhang, F., Foyer, C.H., Yuan, X. and Yanjie Xie, Y. (2021b). The coordination of guard-cell autonomous ABA synthesis and DES1 function in situ regulates plant water deficit responses. J. Adv. Res. 27: 191-97. doi.org/10.1016/j.jare.2020.07.013.
Zhang, R., Hussain, S., Wang, Y., Liu, Y., Li, Q., Chen, Y., Wei, H., Gao, P. and Dai, Q. (2021a). Comprehensive evaluation of salt tolerance in rice (Oryza sativa L.) germplasm at the germination stage. Agronomy 11: doi.org/10.3390/ agronomy11081569.
Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F. and Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 12: doi.org/10.3390/w12082127.
Zhao, X., Zhao, C., Niu, Y., Chao, W., He, W., Wang, Y., Mao, T. and Bai, X. (2022). Understanding and comprehensive evaluation of cold resistance in the seedlings of multiple maize genotypes. Plants 11: doi.org/ 10.3390/plants11141881.
 

Global Footprints