Loading...

Piper longum L. leaf extracts, a candidate allelopathic plant that suppressed the growth of six test plants, could be a source of potent phytotoxic compounds

Citation :- Piper longum L. leaf extracts, a candidate allelopathic plant that suppressed the growth of six test plants, could be a source of potent phytotoxic compounds. Res. Crop. 23: 874-880
MST. ROKEYA KHATUN AND HISASHI KATO-NOGUCHI rokeya.entom@bau.edu.bd
Address : Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan

Abstract

 Using allelopathic plants, particularly those with growth inhibitory action, has gained significant consideration worldwide because such plants do not have detrimental effects on the environment. Piper longum L. (Piperaceae) is a medicinal plant that has already been documented for its diverse ethnomedicinal uses but not for its phytotoxic action. Therefore, aqueous methanol extracts of P. longum were evaluated for their allelopathic activity at plant biochemistry laboratory, Kagawa University, Kagawa, Japan. The allelopathic efficacy of different concentrations of P. longum leaf extract was investigated against six plant species (alfalfa, cress, lettuce, Italian ryegrass, barnyard grass, and foxtail fescue), and their growth was recorded after 48 h of treatment. The results showed significant inhibition of seedling growth at 0.03 g dry weight (DW) equivalent P. longum extract, and this inhibition was further increased with increasing extract concentration. The maximum inhibitory effect was noted at 0.3 g DW equivalent P. longum extract per mL. The concentrations required for 50% inhibition of shoot and root growth were 0.003–0.070 and 0.003–0.028 g DW equivalent P. longum leaf extract per mL, respectively. The shoot growth of cress, alfalfa, and lettuce, and the root growth of cress, foxtail fescue, and alfalfa were inhibited the most by the P. longum extracts. Thus, these results indicate the potent allelopathic activity of P. longum, which also implies the presence of allelopathic compounds in the P. longum leaf extract.

Keywords

Allelopathic potential Piper longum shoot and root growth weed control

References

Ali, A. M., Alam, N. M., Yeasmin, M. S., Khan, A. M. and Sayeed, M. A. (2007). Antimicrobial screening of different extracts of Piper longum Linn. Res. J. Agr. Bio. Sci. 3 : 852-57.
Aliotta, G., Cafeiro, G., Fiorentino, A.  and Strumia, S.  (1993). Inhibition of radish germination and root growth by coumarin and phenylpropanoides. J. Chem. Ecol. 19 : 175-83.
Andriana, Y., Xuan, T. D., Quy, T. N., Tran, H. D. and Le, Q. T.  (2019). Biological activities and chemical constituents of essential oils from Piper cubeba Bojer and Piper nigrum L. Molecules 24 : 1876.
Anuradha, V., Srinivas, P. V. and Rao, J. M. (2004). Isolation and synthesis of isodihydropiperlonguminine. Nat. Prod. Res. 18 : 247-51.
Bachheti, A., Sharma, A., Bachheti, R. K., Husen, A. and Pandey, D. P. (2020). Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites. Springer, Cham. pp. 441-65.
Bich, T. T. N. and Kato-Noguchi, H. (2012). Allelopathic potential of two aquatic plants, duckweed (Lemna minor L.) and water lettuce (Pistia stratiotes L.), on terrestrial plant species. Aquat. Bot. 103 : 30-36.
Einhellig, F. A. (1996). Mechanism of action of allelochemicals in allelopathy. Agron. J. 88 : 886-93.
Gajurel, P. R., Rethy, P., Kumar, Y. and Singh, B. (2008). Piper species (Piperaceae) of North-East India (Arunachal Pradesh). Dehra Dun, India. pp. 50-52.
Gani, H. M. O., Hoq, M. O. and Tamanna, T.  (2019). Ethnomedicinal, phytochemical and pharmacological properties of Piper longum (Linn). Asian J. Med. Biol. Res. 5 : 1-7.
Gomaa, N. H., Hassan, M. O., Fahmy, G. M., González, L., Hammouda, O. and Atteya, A. M. (2014). Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species. Acta. Bot. Bras. 28 : 408-16.
Harsimran, K. G. and Harsh, G. (2014). Pesticides: Environmental impacts and management strategies, pesticides - toxic aspects. IntechOpen Limited; United Kingdom. Available from: https://www.intechopen.com/chapters/46083.
Hassan, M. M., Daffalla, H. M., Yagoub, S. O., Osman, M. G., Gani, M. E. A. and Babiker, A. G. E. (2012). Allelopathic effects of some botanical extracts on germination and seedling growth of Sorghum bicolor L. J. Agric. Technol. 8 : 1423-69.
Heap, I. (2021). The International Herbicide-Resistant Weed Database. Available from: www.weedscience.org
IBM Corp, (2007). IBM SPSS Statistics for Windows. Version 16.0. Armonk, NY, IBM Corp.
Jacob, J. and Sarada, S. (2012). Role of phenolics in allelopathic interactions. Allelopathy J. 29 : 215-30.
Jang, S. Y. and Kuk, Y. I. (2021). Allelopathic effects of Ipomoea hederacea Jacq. extracts from seeds and seedlings at various growth stages. Res. Crop. 22 : 977-85.
Khan, M. S. I. and Kato-Noguchi, H. (2016). Assessment of allelopathic potential of Couroupita guianensis Aubl. Plant Omics J. 9 : 115-20.
Khatun, M. R. and Kato-Noguchi, H. (2021) Growth inhibition of six test plants by Stephania japonica (Thunb.) Miers leaf extracts is an indication of allelopathic activity. Bulg. J. Agric. Sci. 27 : 1093-99.
Kobayashi, K. (2004). Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 4 : 1-7.
Krumsri, R., Iwasaki, A., Suenaga, K. and Kato-Noguchi, H. (2022). Assessment of allelopathic potential of Senna garrettiana leaves and identification of potent phytotoxic substances. Agronomy 12 : 139.
Kumar, S., Kamboj, J., Suman and Sharma, S. (2011). Overview for various aspects of the health benefits of Piper longum Linn. fruit. J. Acupunct. Meridian Stud. 4 : 134-40.
Kyaw, E. H. and Kato-Noguchi, H. (2020). Allelopathic potential of Acacia pennata (L.) Willd. leaf extracts against the seedling growth of six test plants. Not. Bot. Horti Agrobo. 48 : 1534-42.
Ladhari, A., Romanucci, V., De Marco, A., De Tommaso, G., Di Marino, C., Di Fabio, G. and Zarrelli, A. (2018). Herbicidal potential of phenolic and cyanogenic glycoside compounds isolated from Mediterranean plants. Ecol. Quest. 29 : 25-34.
Lawrence, B. M. (2015). Progress in essential oils: Long pepper oil. Perfum. Flavor. 40 : 42-44.
Motmainna, M., Juraimi, A. S., Uddin, M. K., Asib, N. B., Islam, A. K. M. M. and Hasan, M. (2021). Assessment of allelopathic compounds to develop new natural herbicides: A review. Allelopath. J. 52 : 21-40.
Nabi, S. A., Kasetti, R. B. Sirasanagandla, S., Tilak, T. K., Kumar, M. V. J. and Rao, C. A. (2013). Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Compl. Altern. Med. 13 : 1-9.
Nishida, N., Tamotsu, S., Nagata, N., Saito, C. and Sakai, A. (2005). Allelopathic effects of volatile monoterpenoides produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 31 : 1187-203.
Ortega, R. C., Anaya, A. L. and Ramos, L. (1988). Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol. 14 : 71-86.
Pandey, J. K. and Singh, D. K. (2009). Molluscicidal activity of Piper cubeba Linn., Piper longum Linn. and Tribulus terrestris Linn. and their combinations against snail Indoplanorbis exustus Desh. Indian J. Exp. Biol. 47 : 643-48.
Parmar, V., Jain, S., Bisht, K., Jain, R., Taneja, P., Jha, A., Tyagi, O., Prasad, A., Wengel, J., Olsen, C. E. and Boll, P. M. (1997). Phytochemistry of the genus Piper. Phytochem. 46 : 597-73.
Piyatida, P. and Kato-Noguchi, H. (2010). Screening of allelopathic activity of eleven Thai medicinal plants on seedling growth of five test plant species. Asian J. Plant Sci. 9 : 486-91.
Piyatida, P. and Kato-Noguchi, H. (2011). Allelopathic activity of Piper sarmentosum Roxb. Asian J. Plant Sci. 10 : 147-52.
Poonpaiboonpipat, T. and Jumpathong, J. (2019). Evaluating herbicidal potential of aqueous-ethanol extracts of local plant species against Echinochloa crus-galli and Raphanus sativus. Int. J. Agri. Biol. 3 : 648-52.
Pradeep, C. R. and Kuttan, G. (2002). Effect of piperine on the inhibition of lung metastasis induced B16F/10 melanoma cells in mice. Clin. Exp. Metastasis. 19 : 703-08.
Rawat, L. S., Maikhuri, R. K., Negi, V. S., Bahuguna, Y. M., Pharswan, D. S. and Maletha, A. (2016). Allelopathic performance of medicinal plants on traditional oilseed and pulse crop of central Himalaya, India. Natl. Acad. Sci. Lett. 39 : 141-44.
Rice, E. L. (1984). Allelopathy, 2nd edition, Academic Press, Orlando, Florida.
Rob, M. M., Hossen, K., Khatun, M. R., Iwasaki, K., Iwasaki, A., Suenaga, K. and Kato-Noguchi, H. (2021). Identification and application of bioactive compounds from Garcinia xanthochymus Hook. for weed management. Appl. Sci. 11 : 2264.
Saboon, C., Arshad, S. K., Amjad, M. S. and Akhtar, M. S. (2019). Natural compounds extracted from medicinal plants and their applications. Natural Bio-Active Compounds. Springer, Singapore. pp.193-207.
Shurigin, V., Davranov, K., Wirth, S., Egamberdieva, D. and Bellingrath-Kimura, S. D. (2018). Medicinal plants with phytotoxic activity harbour endophytic bacteria with plant growth inhibitory properties. Environ. Sustain. 1 : 209-15.
Siddiqui, Z. S. (2007). Allelopathic effects of black pepper leaching on Vigna mungo (L.) Hepper. Acta Physiol. Plant. 29 : 303-08.
Sodaeizadeh, H., Rafieiolhossaini, M., Havlík, J. and Damme, P. V. (2009). Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul. 59 : 227-36.
Soltys, D., Krasuska, U., Bogatek, R. and Gniazdowska, A. (2013). Allelochemicals as bioherbicides - Present and perspectives. Chapter 20. IntechOpen, London, United Kingdom. pp. 518-42.
Sunila, E. S. and Kuttan, G. (2004). Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol. 90 : 339-46.
Travlos, I. S., Paspatis, E. and Psomadeli, E. (2008). Allelopathic potential of Oxalis pescaprae tissues and root exudates as a tool for integrated weed management. J. Agron. 7 : 202-05.
Wakade, A. S., Shah, A. S., Kulkarni, M. P. and Juvekar, A. R. (2008). Protective effect of Piper longum L. on oxidative stress induced injury and cellular abnormality in adriamycin induced cardiotoxicity in rats. Indian J. Exp. Biol. 46 : 528-33.
Yang, Y. C., Lee, S. G., Lee, H. K., Kim, M. K., Lee, S. H. and Lee, H. S. (2002). A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larva. J. Agric. Food Chem. 19 : 3765-67.
Zakaria, W. and Razak, A. R. (1990). Effects of groundnut plant residues on germination and radicle elongation of four crop species. Pertanika 13 : 297-302.
Zaman, F. and Kato-Noguchi, H. (2017). Evaluation of allelopathic potentiality of Cyanotis axillaris (L.). Res. Crop. 18 : 773.

Global Footprints