Loading...

Effect of addition of biopolymer coated DAP on phosphorus release kinetics over an incubation time 


Citation :- Effect of addition of biopolymer coated DAP on phosphorus release kinetics over an incubation time. Res. Crop. 23: 781-786
M. DHANALAKSHMI, S. MEENA, P. JANAKI, S. KARTHIKEYAN AND L. NALINA dhanamuns@gmail.com
Address : Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore-641 003 (Tamil Nadu), India

Abstract

Phosphorus (P) use efficiency is very low (5 to 25%) due to fixation with Ca+2/Mg+2 in alkaline/calcareous soils and Fe2+/Al3+ in acid soils, reduces the availability of phosphorus in soil. Among the various approaches used to enhance PUE, polymer coated fertilizers are relatively a new concept. Therefore, to alleviate the effects of low use efficiency of inorganic fertilizers and its losses in soil, the incubation study was conducted during 2020 at Tamil Nadu Agricultural University to check the slow-release behaviour of coated DAP fertilizer using biopolymers like chitosan and sodium alginate. The incubation experiment was made with six different coatings of biopolymers and uncoated DAP for studying the release behaviour of P from coated fertilizers. Randomized block design was followed with seven treatments in triplicate and sampling was taken at the intervals of 2nd hour, 4th hour, 120th hour, 7, 14, 28, 35, 42 and 49 days of incubation. A study on slow-release property of coated fertilizers indicated that the treatment combination of both chitosan and sodium alginate (C5A5 - CSACDAP) coated DAP performed well by releasing the P from coated fertilizer was achieved till 35th day of incubation followed by the combination of both chitosan and sodium alginate (C4A4 - CSACDAP). This study indicated that the combination of both the polymers forms a strong polyion complex and tends to give the P release for a longer period than the individual coatings of both polymers on the DAP granule.

Keywords

Biopolymers coated DAP fertilizer incubation slow release

References

Abbasi, M. K., Musa, N. and Manzoor, M. (2015). Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences Discuss. 12 : 1839-73.                     doi:10.5194/bgd-12-1839-2015.
Ashraf, M. N., Aziz, T., Maqsood, M. A., Bilal, H. M., Raza, S., Zia, M., Mustafa, A., Xu, M. and Wang, Y. (2019). Evaluating organic materials coating on urea as potential nitrification inhibitors for enhanced nitrogen recovery and growth of maize (Zea mays). Int. J. Agric. Biol. 22 : 1102-08.  doi : 10.17957/IJAB/15.1175.
Aziz, M. Z., Yaseen, M., Naveed, M., Wang, X., Fatima, K., Saeed, Q. and Mustafa, A. (2020). Polymer-paraburkholderia phytofirmans PsJN coated diammonium phosphate enhanced microbial survival, phosphorus use efficiency and production of wheat. Agronomy 10 : 1344. doi : 10.3390/agronomy10091344.            
Belachew, N. and Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci. 10 :  1-8. doi: 10.1007/s13201-019-1121-7.
Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J. and Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24 : 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
Chaudhari, P. R., Desai, N. H., Chaudhari, P. P. and Rabari, K. V. (2018). Status of chemical properties and available major nutrients in soils of Patan district of Gujarat, India. Crop Res. 53 : 147-53.
Christoph Knoblauch, Francois-Xavier Naramabuye and Rolf Nieder (2018). Phosphorus availability in selected soils of Rwanda : Comparison of four test procedures. Farm. Manage. 3 : 123-35.
El-Assimi, T., Lakbita, O. R., El-Meziane, A., Khouloud, M., Dahchour, A., Beniazza, R., Boulif, R., Raihane, M. and Lahcini, M. (2020). Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. Int. J. Biol. Macromol. 161 :  492-502. https://doi.org/10.1016/j.ijbiomac.2020.06.074.
FAO (2019). World Fertilizer Trends and Outlook to 2022. FAO/AGL Publication, FAO, Rome. https://doi.org/10.4060/ca6746en.
Ghadamkheir, M., Vladimirovich, K. P., Orujov, E., Bayat, M., Madumarov, M. M., Avdotyin, V. and Zargar, M. (2020). Influence of sulfur fertilization on infection of wheat Take-all diseases caused by the fungus, Gaeumannomyces graminis var. tritici. Res. Crops 21 : 627-33.
Herrera, A. S., Esparza, M. D. C. A. and Arias, M. P. S. (2022). Phosphorus paradox and the unsuspected intrinsic property of human beings to dissociate the water molecule. Open Access Peer Reviewed Chapter. DOI: 10.5772/intechopen.104948.
Huacai, G., Wan, P. and Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66 : 372-78. doi: 10.1016/j.carbpol.2006.03.017.
Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi.
Kusumastuti, S., Istiani, A., Rochmadi and Purnomo, C. W. (2019). Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer. Adv. Mater. Sci. Eng. 2019. doi.org/10.1155/2019/2958021.
Ma, Z., Jia, X., Hu, J., Liu, Z., Wang, H. and Zhou, F. (2013). Mussel-inspired thermosensitive polydopamine- graft–Poly (N‑isopropylacrylamide) coating for controlled-release fertilizer. J. Agric. Food Chem. 61 : 12232-12237. doi.org/10.1021/jf4038826.
Mesias, V. S. D., Agu, A. B., Benablo, P. J., Chen, C. H. and Penaloza, D. P. (2019). Coated NPK fertilizer based on citric acid-crosslinked chitosan/alginate encapsulant. J. Ecol. Eng. 20 : 1-12. doi.org/22998993/113418.
Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H. and Wang, D. (2020). Chitosan-based delivery systems for plants : A brief overview of recent advances and future directions. Int. J. Biol. Macromol154 : 683-97. doi.org/10.1016/j.ijbiomac.2020.03.128.
Noor, S., Yaseen, M., Naveed, M. and Ahmad, R. (2017). Use of controlled release phosphatic fertilizer to improve growth, yield and phosphorus use efficiency of wheat crop. Pak. J. Agri. Sci. 54 : 541-47. doi.org/10.21162/PAKJAS/18.6533.
Olsen, S. R., Cole, C., Watanabe, C. V.  and Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939.
Piper, C. S. (1966). Soil and Plant Analysis. Hans Publishers, Bombay.
Rafique, M., Sultan, T., Ortas, I. and Chaudhary, H. J. (2020). Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 238 doi.org/ 10.1016/j.chemosphere.2019.124710.
Rana, M. S., Hu, C. X., Shaaban, M., Imran, M., Afzal, J., Moussa, M. G., Elyamine, A. M., Bhantana, P., Saleem, M.H., Syaifudin, M. and Kamran, M. (2020). Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J. Environ. Manage268 : doi: 10.1016/j.jenvman.2020.110610.
Sarkar, A., Biswas, D. R., Datta, S. C., Manjaiah, K. M. and Roy, T. (2017). Release of phosphorus from laboratory made coated phosphatic fertilizers in soil under different temperature and moisture regimes. Proc. Natl. Acad. Sci. India. Sect. B. Biol. Sci. 87 : 1299-308.
Sarkar, D. J., Barman, M., Bera, T., De, M. and Chatterjee, D. (2018). Agriculture: Polymers in crop production mulch and fertilizer. Encyclopedia of Polymer Applications Pp. 28-47.
Tabasum, S., Younas, M., Zaeem, M. A., Majeed, I., Majeed, M., Noreen, A., Iqbal, M. N. and Zia, K. M. (2019). A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modelling. Int. J. Biol. Macromole122 : 969-96.
Tilman, D.,  Fargione, J., Wolff, B.,  D'antonio, C.,  Dobson, A., Howarth, R., Schindler, D.,  Schlesinger, W. H., Simberloff, D. and  Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science 292 : 281-84.
Tomaszewska, M. and Jarosiewicz, A. (2002). Use of polysulfone in controlled-release NPK fertilizer formulations. J. Agric. Food Chem. 50 : 4634-39.
Tomaszewska, M. and Jarosiewicz, A. (2006). Encapsulation of mineral fertilizer by polysulfone using a spraying method. Desalination. 198 : 346-52.
Walkley, A. and Black, I. (1934). An examination for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37 : 29-38.
 
 

Global Footprints