Loading...

Evaluating diazotrophic endophytic bacteria consortium on the physiology of various varieties of rice (Oryza sativa) in rainfed lowlands

Citation :- Evaluating diazotrophic endophytic bacteria consortium on the physiology of various varieties of rice (Oryza sativa) in rainfed lowlands. Res. Crop. 23: 737-744
ACHMAD FATCHUL AZIEZ, DARYANTI WIYONO AND DESY RATNA WULANDARI achmad.aziez@lecture.utp.ac.id
Address : Department of Agrotechnology, Faculty of Agriculture, Universitas Tunas Pembangunan, Surakarta, Central Java 57135, Indonesia

Abstract

Rainfed land is usually poor in nutrients including nitrogen nutrients. A consortium of endophytic bacteria can fix nitrogen from the air so that it is expected to improve the physiology of lowland rice varieties. This study was conducted during June 2022 at rainfed rice fields in Demangan, Sambi, Boyolali, Central Java, Indonesia to determine the analysis of the growth of paddy varieties at various doses of the endophytic bacteria consortium. This research used a completely randomized block design with two factors and three replications. The first factor was a consortium of endophytic bacteria with a dose of 0, 20, 30, and 40 L/ha/application, while the second factor was varieties paddy i.e., Situbagendit, Ciherang and Mekongga. The results showed that the dose of endophytic bacteria consortium 40 L/ha/application showed an increase in leaf area index (LAI), leaf area duration (LAD), net assimilation rate (NAR), and crop growth rate (CGR) compared to doses of 0, 20 and 30 L/ha/application. The implication of this research is that in rainfed rice fields to increase LAI, LAD, NAR and CGR of rice varieties, it is better to use a consortium dose of diazotroph endophytic bacteria 40 L/ha/application and can use Situbagendit, Ciherang or Mekongga varieties.

Keywords

Crop growth rate crop physiology endophytic bacteria rainfed rice

References

Acuña, T. L. Botwrigh., H. R. Lafitte and Wade, L. J. (2008). Genotype × environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments. Field Crops Res. 108 :117–25. doi: 10.1016/j.fcr.2008.04.003.
AfzalI, Shinwari, Z. K. and Sikandar S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, hostrange and genetic determinants. Microbiol Res. 221 : 36–49.
Aghajan Bahadori, Abdolmehdi Bakhshandeh, Hossain Gharineh, Naeimeh Enayatizamir, Alireza Shafeinia (2021). Effect of endophytic and rhizospheric growth promoting bacteria on quantitative and qualitative yield of sugarcane (Saccharum officinarum). Crop Res. 56 : 148-58.
Ahadiyat, Y. R., Hidayat, P. and Susanto, U. (2014). Drought tolerance, phosphorus efficiency and yield characters of upland rice lines. Emirates J. Food Agric. 26 :25–34. doi: 10.9755/ejfa.v26i1.14417.
Ali, M. A., Naveed, M. and Mustafa, A. (2017). The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V, Kumar M, Sharma S, et al. (Eds), Probiotics and plant health. Singapore: Springer. Pp. 253-90.
Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16 : 729-70.
Bhattacharyya, P. N. and Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 28 : 1327-50.
Bodenhausen, N., Bortfeld, M-Miller, Martin, A. and Vorholt, J. A. (2014). A Synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLOS Genet. 10 : doi: org./10.1371/journal.pgen.1004283.
 Chebotar, V. K., Zaplatkin, A. N., Komarova, O. V., Baganova, M. E., Chizhevskaya, E. P., Polukhin, N. I. and Balakina, S. E. (2021). Endophytic bacteria for development of microbiological preparations for increasing productivity and protection of new potato varieties. Res. Crop. 22 : 104-07.
Chi, F., Yang, P., Han, F., Jing, Y. and Shen, S. (2010). Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10 : 1861-74.
Compant, S., Duffy, B., Nowak, J., Clément, C. and Barka. E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microb. 71 : 4951-59.
Eljounaidi, K., Lee, S. K. and Bae, H. H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–Review and future prospects. Biol. Control 103 : 62–68.
Gana, A. (2011). Screening and resistance of traditional and improved cultivars of rice to drought stress at Badeggi, Niger State, Nigeria. Agric. Biol. J. North Ame. 2 :1027–31.
Gardner, F. P., Pearce, R. B. and Richell, R. L. (1991). Physiology of Crop Plant. Iowa State Univ Press, U.S.A.
Glick, B. R. (2020). Introduction to plant growth-promoting bacteria. . Springer, Cham. Pp. 37-38.
Gomez, A. G. and Gomez, K. A. (1984). Statistical procedures for agricultural research (2nd ed). New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc.
Hallmann, J., Quadt-Hallmann, Q. A., Mahaffee, W. F. and Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43 : 895-914.
Hasanuzzaman, Mirza, Kamrun Nahar, Tasnim Farha Bhuiyan, Taufika Islam Anee, Masashi Inafuku, Hirosuke Oku and Masayuki Fujita (2017). Salicylic Acid: An All-Rounder in Regulating Abiotic Stress Responses in Plants. In: Phytohormones - Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. Pp. 31-74.
Knief, C., Nathanae, D., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Mering, C. and Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. Germany The ISME J. 6 : 1378-90.
Kumar, S. and Rao, B. (2012). Biological nitrogen fixation: A review. Int. J. Adv. Life Sci. 1 : 1-9.
Kumar, S., Dwivedi, S. K., Singh, S. S., Bhatt, B. P., Mehta, P., Elanchezhian, R., Singh, V. P. and Singh, O. N. (2014). Morpho-physiological traits associated with reproductive stage drought tolerance of rice (Oryza Sativa L.) genotypes under rain-fed condition of Eastern Indo-Gangetic plain. Indian J. Plant Physiol. 19 : 87-93.
Kumar, J., Singh, D. and Ghosh, P. (2017). Endophytic and epiphytic modes of microbial interactions and benefits. Plant-microbe interactions in agro-ecological perspectives. Pp. 255-71.
Kumar, A. and Verma, J. P. (2018). Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 207 : 41-52.
Le Cocq, K., Gurr, S. J. and Hirsch, P. R. (2017). Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 18 : 469-73.
Liu, H. W., Carvalhais, L. C. and Crawford, M. (2017). Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 8 : doi.org/10.3389/ fmicb.2017.02552.
Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting Rhizobacteria. Annual Rev. Microbiol. 63 : 541-56.
Maisura, M. Chozin, Lubis, I., Junaedi, A. and Ehara, H. (2014). Some physiological character responses of rice under drought conditions in a paddy system. J. ISSAAS 20 : 104-14.
Meng, C., Liu, H., Yi Wang, Y., Ji Zhou, L., Zhou, P.,  Liu, X., Li, Y. and Wu, J. (2018). Response of regional agricultural soil phosphorus status to net anthropogenic phosphorus input (NAPI) determined by soil ph value and organic matter content in subtropical China. Chemosphere 200 : 487-94.
Morris, C. (2001). Impact of Biofilms on the Ecology and Control of Epiphytic Bacteria. Interdisciplinary Plant Biology Seminar Spiker, January 29, 2001. Plant Pathology Station, INRA, France.
Miller, F. H. and Berg, G. (2009). Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect. 116 : 149-55.
Ministry of Agriculture of the Republic of Indonesia (2009). Law No. 41 of 2009 on the protection of sustainable food agricultural land. Agricultural Land Statistics, Indonesia.
Pal, A., Chattopadhyay, A. and Paul, A. K. (2012). Diversity and antimicrobial spectrum of endophytic bacteria isolated from Peaderi foetida L. Int. J. Curr. Pharm. Res. 4 : 123-27.
Pii, Y., Mimmo, T. and Tomasi, N. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51 : 403-15.
Rahil Golfam, Khadijeh Kiarostami, Tahmineh Lohrasebi, Shabnam Hasrak, Khadijeh Razavi (2021). A review of drought stress on wheat (Triticum aestivum L.) starch. Farm. Manage. 6 : 47-57.
Rajendran, L. and Samiyappan, R. (2008). Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani. Plant Pathol. J.  7 : 1-12.
Rao, N. S. S. (2007). Soil Microorganism and Plant Growth. Oxford and IBM publishing.
Raman, A., Verulkar, S. B., Mandal, N. P., Variar, M., Shukla, V. D., Dwivedi, J. L., Singh, B. N., Singh, O. N., Padmini Swain, Ashutosh K. Mall, Robin, S., Chandrababu, R., Abhinav Jain, Tilatoo Ram, Shailaja Hittalmani, Stephan Haefele, Hans Peter Piepho and Arvind Kumar (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice 5 : 1–12.
Verma, M., Mishra, J. and Arora, N. K. (2019). Plant growth-promoting rhizobacteria: Diversity and applications. In: Sobti R, Arora N, Kothari R. (Eds), Environmental Biotechnology: For Sustainable Future. Singapore: Springer. Pp. 129-73.
Zhang, Y., Yu, X. X. and Zhang, W. J. (2019). Interactions between endophytes and plants: Beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. J. Plant Biol. 62 :1-13.
Yoshida, S. (1981). Fundamentals of Rice Crop Science. The International Rice Research Institute. Los Banos, Laguna, Philippines.
 
 

Global Footprints