Loading...

Production of effervescent tablet from jambolan (Syzygium cumini L.) fruit


Citation :- Production of effervescent tablet from jambolan (Syzygium cumini L.) fruit. Res. Crop. 23: 888-895
Nguyen Phuoc Minh nguyenphuocminh@tdmu.edu.vn
Address : Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
Submitted Date : 23-08-2022
Accepted Date : 22-09-2022

Abstract

Jambolan (Syzygium cumini L.) fruit contained numerous phytochemical and bioactive constituents beneficial for human health. However, this underutilized fruit was highly susceptible to quality degradation after harvesting. Due to the seasonality and perishability of the jambolan fruit, it’s very necessary to convert this valuable fruit into instant, stable and convenient form for long-term consumption. This research was conducted at STNanotech laboratory in 2021 to evaluate the exploitation of jambolan fruit for juice extraction, spray drying and effervescent tablet production. Different variables of spray drying conditions such as proportion of wall material (maltodextrin 8-16%), inlet/outlet drying temperature (150/80, 160/85, 170/90, 180/95, 190/100 oC/oC), feed flow rate (7.5-17.5 ml/min) were deeply investigated on physicochemical and antioxidant properties of spray-dried jambolan powder (SDJP). In preparation of effervescent tablet, the spray-dried jambolan powder (SDJP) was mixed with sodium bicarbonate (SB) and magnesium stearate (MS) in five different formulas: F1 (65/10/25), F2 (65/5/30), F3 (70/10/20), F4 (65/15/20), F5 (70/15/15). Results showed that jambolan extract should be spray-dried with maltodextrin 14% as wall material (WM), inlet/outlet drying temperature 170/90 oC/oC, feed flow rate (FFR) 12.5 ml/min to obtain the optimal particle size 7.94±0.05 µm, solubility 96.80±0.02%, yield 56.71±0.01%, microencapsulation efficiency (ME) 93.25±0.05%, total phenolic content (TPC) 298.45±0.79 mg GAE/100 g, anthocyanin content (AC) 76.59±0.06 mg/100 g, and antioxidant activity (AA) 85.63±0.04%. The jambolan effervescent tablet produced by formula F2 (65/5/30) achieved the optimal hardness 47.24±0.05 N, disintegration time (DT) 271.05±2.03 s, TPC 201.03±1.28 mg GAE/100 g, AC 40.89±0.30 mg/100 g, AA 73.12±0.24% and overall acceptance (OA) 8.81±0.05. Jambolan fruit could be utilized to produce spray-dried powder and its effervescent tablet as a versatile functional food with excellent physicochemical, antioxidant and sensorial characteristics under safe and convenient way for all year round.

Keywords

Antioxidant effervescent tablet jambolana physicochemical spray dried powder


References

Agarwala, P., Gaurb, P. K. and Kumard, S. S. (2019). An Overview of phytochemical, therapeutic, pharmacological and traditional importance of Syzygium cumini. Asian J. Pharm. 3 : 5-17.
Akhtar, M., Randhawa, M. A. and Iqbal, Z. (2016). Nutritional, therapeutic and food applications of Jamum (Syzygium cumini). Can. J. Food Sci. Technol. 1 : 1-8.
Brandao, T. S. O., Pinho, L. S. and David, J. M. (2017). Jambolan wine processing. BioResour. 12 : 7069-83.
Carvalho, T. M., Nogueira, T. Y. K. and  SilvaLago-Vanzela, E. (2017). Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Res. Int. 102 : 32-42.
Chander, S., Kumar, S., Kavino, M. and Bora, L. (2016). Effect of seasonal variation on softwood grafting under different environmental conditions in jamun (Syzygium cumini Skeels.). Res. Crop. 17 : 524-28.
Coelho, E. M., Azevêdo, L. C. and Lima, M. S. (2016). Phenolic profile, organic acids and antioxidant activity of frozen pulp and juice of the jambolan (Syzygium cumini). J. Food Biochem. 40 : 211-19.
Dagadkhair, A. C., Pakhare, K. N. and Andhale, R. R. (2017). Jamun (Syzygium cumini) Skeels: a traditional therapeutic tree and its processed food products. Int. J. Pure Applied Biol. Sci. 5 : 1202-09.
Elez Garofulic, I., Zoric, Z. and Dragovic-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as afected by carrier material and temperature. Food Technol. Biotechnol. 54 : 441–49.
Kagan, I., Tugba, O. and Cemal, C. (2016). Effervescent tablets: a safe and practical delivery system for drug administration. ENT Updates 6 : 46–50.
Khalaf, R., Goli, S. A. H. and Behjatian, M. (2016). Characterization and classification of several monoforal Iranian honeys based on physicochemical properties and antioxidant activity. Int. J. Food Property 19 : 1065–79.
Khalid, M., Gulzar, A. N. and Pradyuman, K. (2018). Production of fruit juice powders by spray drying technology. Int. J. Adv. Res. Sci. Eng. 07 : 59-67.
Maskat, M. Y., Lung, C. K. and Siddiqui, S. A. (2014). Temperature and feed rate effects properties of spray dried Hibiscus sabdariffa powder. Int. J. Drug Dev. Res. 6 : 28-34.
Mishra, P., Mishra, S. and Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of alma (Emblica officinalis) juice powder. Food Bioprod. Process. 92 : 252-58.
Muzafar, K., Dinkarrao, B. V. and Kumar, P. (2016). Optimization of spray drying conditions for production of quality pomegranate juice powder. Cogent Food Agric. 2 : doi.org/10.1080/ 23311932.2015.1127583.
Naji‑Tabasi, S., Emadzadeh, B. and Akbari, E. (2021). Physico‑chemical and antioxidant properties of barberry juice powder and its effervescent tablets. Chem.  Biol. Technol. Agric. 8 : doi.org/10.1186/s40538-021-00220-z.
Nguyen, P. M. (2020). Technical parameters affecting the spray drying of roselle (Hibiscus sabdariffa) powder. J. Pure Appl. Microbiol. 14 : 2407-16.
Nguyen, P. M. (2021). Variables influencing to spray drying of durian (Durio zibethinus) juice into powder. Biosci. Res. 18 : 936-43.
Panditharathana, P. W. M. H. P., Fernando, H. R. P. and Dissanayake, P. K. (2018). Production of durian (Durio zibethinus) powder by spray drying technique. Tropic. Agric. 166 : 153-68.
Patel, S. G. and Siddaiah, M. (2018). Formulation and evaluation of effervescent tablets: a review. J. Drug Delivery Ther. 8 : 296–03.
Peng, Z., Li, J. and Zhao, G. (2013). Effect of carriers on physicochemical proper‑ ties, antioxidant activities and biological components of spray-dried purple sweet potato fours. LWT-Food Sci. Technol. 51 : 348–55.
Pimolmart, R., Thanaporn, A. and Jindaporn, P. (2017). Physicochemical properties of spray-dried young coconut juice. Int. J. Pharm. Med. Biol. Sci. 6 : 43-47.
Rakesh, K. R., Swaminathan, S. and Sangita, G. (2020). Phytochemical properties of spray dried jamun juice powder as affected by encapsulating agents. J. Pharm. Phytochem.  9 : 599-02.
Safwan, A. R., Paul, A. C. and Amal, A. E. (2015). Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug. Drug Design Dev. Ther. 9 : 1843-57.
Saifullah, M., Yusof, Y. and Aziz, N. (2014). Tableting and dissolution characteristics of mixed fruit powder. Agric. Agric. Sci. Procedia 2 : 18-25.
Saifullah, M., Yusof, Y. and Aziz, N. (2016). Dissolution profiling and its comparison of natural fruit powder effervescent tablets. J. Food Eng. 178 : 60–70.
Sangeeta, S., Nikhil, K. M. and Charu, L. M. (2014). Effect of spray drying of four fruit juices on physicochemical, phytochemical and antioxidant properties. J. Food Process.  Preserv. 1 : 1-9.
Santiago, M. C. P. A., Gouvêa, A. C. M. S. and Nogueira, R. I. (2016). Characterization of jamelao (Syzygium cumini (L.) Skeels) fruit peel powder for use as natural colorant. Fruits 71 : 3-8.
Shwetha, Priya, B. and Preetha, R. (2016). Study on color stability and microencapsulation of anthrocyanin pigment using spray drying. Biosci. Biotechnol. Res. Asia 13 : 1207-14.
Singh, J. P., Kaur, A. and Arora, D. S. (2016). In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT-Food Sci. Technol. 65 : 1025-30.
Singleton, V. L. and Rossi, J. A. J. R. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Amer. J. Enol. Viticulture 16 : 144–58.
Swaminathan, S., Sowriappan, J. D. B. and Mallela, S. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 274 : 37-43.
Tekade, B. W., Jadhao, U. T. and Bhortake, L. R. (2014). Formulation and evaluation of diclofenac sodium effervescent tablet. Innovations Pharm. Pharmacother. 2 : 350–58.
Tuyet, T. A. T. and Ha, V. H. N. (2018). Effects of spray-drying temperatures and carriers on physical and antioxidant properties of lemongrass leaf extract powder. Beverages 4 : 1-14.
Vidovic, S. S., Vladic, J. Z. and Popovic, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technol. 258 : 209–15.
Walton, D. E. (2000). The morphology of spray-dried particles. A qualitative view. Drying Technol. 18 : 1943–86.
Yousef, S., Emam-Djomeh, Z. and Mousavi, S. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). J. Food Sci. Technol. 48 : 677–84.
Yue, S., Jing, W. and Chao, Z. (2018). Inlet temperature affects spray drying quality of watermelon powder. Czech J. Food Sci. 36 : 321–28.

Global Footprints