Loading...

Residual effect of biofortified iodine in soil, plant, crop yield and quality of tomato (Solanum lycopersicum L.)

Citation :- Residual effect of biofortified iodine in soil, plant, crop yield and quality of tomato (Solanum lycopersicum L.). Res. Crop. 23: 801-807
VR. MAGESHEN, P. SANTHY, S. MEENA, MR. LATHA, A. SENTHIL, T. SARASWATHI AND P. JANAKI mageshsmart2@gmail.com
Address : Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Vadavalli, Coimbatore-641 0033, India
Submitted Date : 16-08-2022
Accepted Date : 12-09-2022

Abstract

 When iodine levels in the soil are inadequate, resulting in limited crop uptake and as a result, a population with insufficient iodine intake. Iodine deficiency can be avoided by biofortifying commonly consumed crops with iodine. Tomato is the best crop for biofortification study as it is having the capacity to store excess iodine in pholoem. The field experiment was carried out in Thondamuthur block of Viraliyur village at Coimbatore district of Tamil Nadu in 2021. The purpose of this study was to determine the effect of biofortication of iodine in residual tomato growth, yield, quality and iodine content. Potassium iodate and Chitosan were applied in the form of soil, foliar and Chitosan iodate complex at different stages of plant growth. The results revealed that the soil fertilization of potassium iodate alone resulted in lower uptake of residual iodine in fruits because the iodine was susceptible to high volatilization and less phyto-availability. While foliar spray alone increased the residual iodine content in roots and stem. However, residual higher iodine accumulation in the tomato fruits was achieved through the combination of foliar and iodine Chitosan forms. As electrostatic interaction between Chitosan and iodate prevents volatilization and gradually increases the bioavailability of iodine from soil to fruits.  Based on the discussion, biofortification of iodine through potassium iodate Chitosan complex paved the way for the improvement of growth, yield, quality and iodine content in fruits. Hence, biofortification of iodine through iodate Chitosan complex increased the iodine content in tomato fruit and introducing it in our daily diet may be helpful to reduce iodine deficiency disorder. 
 

Keywords

Biofortification Chitosan foliar iodine tomato

References

Abdelgawad, K. F., El-Mogy, M. M., Mohamed, M. I. A., Garchery, C. and Stevens, R. G. (2019). Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy 9 : doi.org/10.3390/agronomy9020051.
Abolusoro, P. F., Adekola, F. O., Abdulrahaman, A. A., Abolusoro, S. A., Aremu, C. O., Daramola, F. Y. and Ige, S. A. (2020). Variability of selected tomato
(Lycopersicon esculentum) cultivars for yield traits and storability under southern Guinea Savannah ecological vegetation. Res. Crop. 21 : 729-35.
Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C. and Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods 
10 ; doi.org/10.3390/foods10020223.
Charishma, K. V., Chatterjee, S., Supriya, T., Bera, M., Barman, S. and Datta, N. (2022). Integrated nutrient management on the growth, yield, nutrient uptake and soil nutrient status of tomato (Solanum lycopersicum) cv. ‘Arka Rakshak’ under north-eastern ghats region of India. Crop Res57 : 266-74.
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Kaur, M., Shivay, Y. S., Nisar, S., Gaber, A., Brestic, M., Barek, V. and Skalicky, M. (2022). Biofortification-A frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules 27. doi:10.3390/molecules27041340.
Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. and Dekamin, M. G. (2021). Progresses in chitin, Chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano) catalysts for the heck coupling reactions: A review. Int. J. Biol. Macromol 192 : 771-819.
Gonzali, S., Kiferle, C. and Perata, P. (2017). Iodine biofortification of crops : Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechno. 44 : 16-26.
Grzanka, M., Smoleń, S., Skoczylas, Ł. and Grzanka, D. (2021). Biofortification of sweetcorn with iodine: Interaction of organic and inorganic forms of iodine combined with vanadium. Agronomy 11. doi.org/10.3390/agronomy11091720.
Hasanuzzaman, M., Bhuyan, M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C. and Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8. doi.org/10.3390/ agronomy8030031.
Jun, F. L., Yan, G. Y., Gang, M. F., Chang, L. I. U., Chun, L. L., Yang, D. U., Xiang, L. L., Ming, L. I., Hui, S. X., Jun, L. S. and Peng, L. I. U. (2022). Time series and spatial epidemiological analysis of the prevalence of iodine deficiency disorders in China. Biomed. Environ. Sci. 35 : 735-45.
Khan, M. K., Faruque, M. H., Chowdhury, B. and Ahsan, M. (2022). Food fortification in prevention of micronutrient deficiencies of Children under five years in Bangladesh and its effects on sustainable development goals. J. Food Nutr. Res. 5 : 603-11.
Knapp, G., Maichin, B. Fecher, P. Hasse, S. and Schramel, P. (1998). Iodine determination inbiological materials options for sample preparation and final determination. Fresenius J. Anal. Chem. 362 : 508-13.
 Kumar, B., Yadav, V., Ramawat, N. and Singh, K. (2017). Agronomic biofortification of wheat grains with zinc through different modes of zinc fertilization. Crop Res. 52 : 121-26.
Li, C., Luo, X., Li, L., Cai, Y., Kang, X. and Li, P. (2022). Carboxymethyl Chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. Int. J. Biol. Macromol. 209 : 344-55.
Limchoowong, N., Sricharoen, P., Konkayan, M., Techawongstien, S. and
Chanthai, S. (2018). A simple, efficient and economic method for obtaining iodate-rich chilli pepper based Chitosan edible thin film. J. Food Sci. Technol55 : 3263-72.
Safari, Z. S., Ding, P., Juju Nakasha, J. and Yusoff, S. F. (2020). Combining Chitosan and vanillin to retain post-harvest quality of tomato fruit during ambient temperature storage. Coatings 10 : doi :10.3390/coatings10121222.
Saleem, M. S., Anjum, M. A., Naz, S., Ali, S., Hussain, S., Azam, M., Sardar, H., Khaliq, G., Canan, İ. and Ejaz, S. (2021). Incorporation of ascorbic acid in Chitosan-based edible coating improves post-harvest quality and storability of strawberry fruits. Int. J. Biol. Macromol. 189 : 160-69.
Shah, S. and Hashmi, M. S. (2020). Chitosan–Aloe vera gel coating delays post-harvest decay of mango fruit. Hortic. Environ. Biotechnol61 : 279-89.
Shehata, S. A., El-Mogy, M. M. and Mohamed, H. F. Y. (2019). Post-harvest quality and nutrient contents of long sweet pepper enhanced by supplementary potassium foliar application. Int. J. Veg. Sci. 25 : 196-209.
Sorrentino, M. C., Capozzi, F., Amitrano, C., De Tommaso, G., Arena, C., Iuliano, M., Giordano, S. and Spagnuolo, V. (2021). Facing metal stress by multiple strategies : Morpho-physiological responses of cardoon (Cynara cardunculus L.) grown in hydroponics. Environ. Sci. Pollut. Res. 28 : 37616-26.
Vatandoust, A., Krishnaswamy, K., Li, Y. O. and Diosady, L. (2022). Triple fortification of salt with iron, iodine and zinc oxide using extrusion. J. Food Eng. 339. doi.org/10.1016/j.jfoodeng.2022.111258.
Wahab, A. A. and Hasan, H. M. (2019). Effect of soaking tomato (Lycopersicon esculentum Mill.) seeds in organic nutrient solutions on germination and seedling growth parameters. Farm. Manage. 4 : 79-81.
Wani, T. U., Pandith, A. H. and Sheikh, F. A. (2021). Polyelectrolytic nature of Chitosan: Influence on physico-chemical properties and synthesis of nanoparticles. J. Drug. Deliv. Sci. Technol. 65. doi:10.1016/j.jddst.2021.102730.
Weng, H., Hong, C., Xia, T., Bao, L., Liu, H. and Li, D. (2013). Iodine biofortification of vegetable plants-An innovative method for iodine supplementation. Sci. Bull. 58 : 2066-72.
 

Global Footprints