Loading...

Physiological and phyto-pathological assessment scion-rootstock combinations for apple cv. Aport and M. sieversii

Citation :- Physiological and phyto-pathological assessment scion-rootstock combinations for apple cv. Aport and M. sieversii. Res. Crop. 23: 795-800
SAGI SOLTANBEKOV, SVETLANA DOLGIKH, MOLDIR ZHUMAGULOVA, AIGUL MADENOVA, ZHANNA ISINA AND BALNUR KABYLBEKOVA sagi.soltanbekov@mail.ru
Address : Laboratory of Biotechnology of Horticultural Crops, Kazakh Fruit and Vegetables Research Institute, 050060, Gagarin ave., 2385, Almaty, Kazakhstan
Submitted Date : 11-08-2022
Accepted Date : 8-10-2022

Abstract

Rootstocks play an important role in the life of fruit crops.The full realization of the potential of the variety depends on them, such as physiological capabilities, drought resistance, winter hardiness, productivity, durability and fruiting rate. To determine the best scion-rootstock combinations physiological and phyto-pathological assessment scion-rootstock combinations for apple cv. ‘Aport’ and M. sieversii were studied. The experiment was carried out from February 2019 to July 2022 in the experimental orchard of Kazakh Fruit and Vegetable Research Institute. In the experimental garden (2015 y. planted) the physiological studies of the water homeostasis, adaptive potential, ecological status, and coefficient stress were carried out in dynamics. High adaptive homeostatic coefficients and a good ecological state were observed in forms № 1, 8, 11 and № 9 throughout the growing season. The robustness of these forms was on an average 38% higher than that of the № 2, 3, 4 and № 7. The maximum fetal weight was 270 g. According to biochemical analysis, forms № 2, 11 and № 9 differed in the amount of vitamin C and total sugar. Scab and powdery mildew are common ‘Aport’ diseases. Forms № 11, 2, 10 are the most resistant rootstock-scion combinations. To conclude, № 8, 9 and № 11 were considered as highly adaptive, productive, rapid-fruiting and resistant to biotic and abiotic factors, free-subsurface factors. These varieties were collected from the Reserves of State National Parks of Kazakhstan.
 

Keywords

Apple biochemical parameters diseases Malus sieversii scion-rootstock 


References

 Agasyeva, I. S., Ismailov, V. Ya, Nastasiy, A. S. and Nefedova, M. V. (2021). Development of methods of biological control of apple moth (Cydia pomonella). Res. Crop. 22 : 141-45.
Agrios, G. (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Amsterdam. pp 398-401.
Bayat, N., Naderi, R. and Maidani, A. R. (2015). Greenhouse screening of cactus rootstock and scion for the best rootstock-scion combination. Crop Res. 50 : 125-30.
Dolgikh, S. G. and Isin, M. M. (2013). Molecular and genetic assessment of sort-rootstock combinations of an apple tree Aport. J. Curr. Op. Biot. 24 : 119.
Dolgikh, S., Issin, M. and Soltanbekov, S. (2017). Influence of endogenous auxin on the regeneration process of germinating seeds of Malus sieversii Ldb. J. Biotechnol. 256 : 98.
Dzhangaliev, A. D., Salova, T. N. and Turekhanova, P. M. (2003). The wild fruit and nut plants of Kazakhstan. Hor. Rev. 29. Westport then New York, USA. pp. 305-72.
Fazio, G., Chao, C. T., Forsline, P. L., Richards, C. and Volk, G. (2014). Tree and root architecture of Malus sieversii seedlings for rootstock breeding. Acta Hortic. 1058 : 585-94.
Forsline P. L., Aldwinckle H. S., Dickson E. E., Hokanson S. C. (2003). Collection, maintenance, haracterization and utilization of wild apples from central Asia. Hort. Rev. 29 : 1-61.
Geng, D. L., Lu, L. Y., Yan, M. J., Shen, X. X., Jiang, L. J., Li, H. Y., and Guan, Q. M. (2019). Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. J. Integr. Agric. 18 : 1280-94.
Gritsenko, D., Pozharskiy, A., Dolgikh, S., Aubakirova, K., Kenzhebekova, R., Galiakparov, N., Karimov, N. and Sadykov, S. (2022). Apple varieties from Kazakhstan and their relation to foreign cultivars assessed with RosBREED 10K SNP array. Eur. J. Hortic. Sci. 87 : 1-8.
Harshman, J. M., Evans, K. M., Allen, H., Potts, R., Flamenco, J., Aldwinckle, H. S. and Norelli, J. L. (2017). Fire blight resistance in wild accessions of Malus sieversii. Plant Dis. 101 : 1738-45.
Ikinci, A., Bolat, I., Ercisli, S. and Kodad, O. (2014). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. 'Santa Maria' in semi-arid conditions. Biol. Res. 47: 1-8.
Isin, M. M. (2016). Degeneration (degradation) of the Aport apple tree as a non-infectious disease and ways to prevent it. J. Plant Prot. 89 : 78-79.
Juniper B. and Mabberley, D. J. (2006). The story of the apple. Portland, (OR) : Timber Press, Portland. pp. 511.
Luby, J., Forsline, P., Aldwinckle, H., Bus, V. and Geibel, M. (2001). Silk road apples–Collection evaluation, and utilization of Malus sieversii from Central Asia. Hort. Sci. 36 : 225-31.
Nimbolkar, P. K., Shiva, B. and Rai, A. K. (2016). Rootstock breeding for abiotic stress tolerance in fruit crops. Int. J. Agric. Environ. Biotechnol. 9 : 375.
Omasheva, M. E., Pozharsky, A. S., Smailov, B. B., Ryabushkina, N. A. and Galiakparov, N. N. (2018). Genetic diversity of apple cultivars growing in Kazakhstan. Russ. J. Genet.  54 : 176-87.
Omasheva, M. Y., Pozharskiy, A. S., Maulenbay, A. D., Ryabushkina, N. A. and Galiakparov, N. N. (2016). SSR genotyping of Kazakhstan apple varieties : Identification of alleles associated with resistance to highly destructive pathogens. Biot. Theory and Practice 2 : 46-58.
Savel’ev, N. I., Lyzhin, A. S. and Savel’eva, N. N. (2016). Genetic diversity of genus Malus Mill. for scab resistance genes. Russ. Agric. Sci. 42 : 310-13.
Sheng Chen, Xianzhi Zhou, Yufen Wu, Yang Chen, Li Zhang, Weiguang Zhang (2016). Impact of cucurbita and Cucumis melo rootstocks on aroma volatile compounds in oriental melon fruits. Res. Crop. 17 : 777-83.
Vavilov, N. I. (1931). Wild relatives of fruit trees in the Asian part of the USSR and the Caucasus and the problem of the origin of fruit trees. Tr. according to App. Botan. Genet. and Breed. 26 : 85-107.
Volk, G. M., Henk, A. D., Forsline, P. L., Szewc-McFadden, A. K., Fazio, G., Aldwinckle, H. and Richards, C. M. (2017). Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Genet. Resour. Crop Evol. 64 : 1513-28.
Wisniewski, M., Artlip, T., Liu, J., Ma, J., Burchard, E., Norelli, J. and Dardick, C. (2020). Fox hunting in wild apples : Searching for novel genes in Malus sieversii. Int. J. Mol. Sci. 21 : 9516.
Yang, M., Zhang, Y., Zhang, H., Wang, H., Wei, T., Che, S. and Yan, G. (2017). Identification of MsHsp20 gene family in Malus sieversii and functional characterization of MsHsp16. 9 in heat tolerance. Front. Plant Sci. 8 : 1761.
Zelepukhin V. D., Kovalenko E. M. and Adrianova G. P. (2002) Physiological assessment homeostasis and adaptive potential of plants. Bull. Agric. Sci. Kazakhstan 5 : 26-28.

Global Footprints