Loading...

Biochemical profiling of Brassica juncea doubled haploid mutant genotypes under white rust disease stress 


Citation :- Biochemical profiling of Brassica juncea doubled haploid mutant genotypes under white rust disease stress. Res. Crop. 23: 574-583
SHRADHA NIRWAN, ANUPRIYA CHATTERJEE, ANAND KUMAR TEWARI, PANKAJ SHARMA, ABHA AGNIHOTRI AND NEERAJ SHRIVASTAVA neersar@gmail.com
Address : Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh-201303, India

Abstract

          White rust, caused by oomycete pathogen Albugo candida, is a serious disease for the crops of Brassicaceae family. It is an obligate pathogen responsible for up to 60% yield loss with combined infection of leaves and inflorescence across the globe. Biochemical variations in host plants can alter the content of proteins, sugars, phenols, iron content etc. enables to understand the biochemistry of host-pathogen interaction. Therefore, the present study was conducted during 2017-2019 at Amity University, Noida, Uttar Pradesh to evaluate the biochemical response of Brassica juncea var. Varuna and its doubled haploid (DH) mutant genotypes infected with A. candida causing white rust at cotyledonary leaf stage. The seven mutant genotypes were tested for pathogenic response against five white rust isolates (WRI). In the challenge assay, mutant genotypes C66 and C69 showed resistance response as compared to susceptible host B. juncea var. Varuna against different isolates on the basis of disease severity. The biochemical parameters were found to be high in the uninoculated genotypes in comparison to infected cotyledons of B. juncea genotypes. The biochemical profile emphasizes significant increase in content of protein, sugar, and phenol from highest in genotype C66 positively correlating with resistance response against pathogen in comparison to other mutant genotype C69 and susceptible check Varuna. The results suggest that factors conditioning the response of mutant genotypes to WRI may differ or control in different ways and triggers novel defense signaling.

Keywords

Albugo candida disease resistance mutagenesis plant-pathogen interaction

References

Arora, H., Padmaja, K. L., Paritosh, K., Mukhi, N., Tewari, A. K., Mukhopadhyay, A., Gupta, V., Pradhan, A. K. and Pental, D. (2019). BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candidaTheor. Appl. Genet. 132 : 2223-236.
Awasthi, R. P., Nashaat, N. I., Kolte, S. J., Tewari, A. K., Meena, P. D. and Bhatt, R. (2012). Screening of putative resistant sources against Indian and exotic isolates of Albugo candida inciting white rust in rapeseed-mustard. J. Oilseed Brassica 1 : 27-37.
Borniego, M. L., Molina, M. C., Guiamét, J. J. and Martinez, D. E. (2020). Physiological and proteomic changes in the apoplast accompany leaf senescence in ArabidopsisFront. Plant Sci. 10 : doi.org/10.3389/fpls.2019.01635.
Bray, H. G. and Thorpe, W. V. (1954). Analysis of phenolic compounds of interest in metabolism. Methods Biochem. Anal. 1 : 27-52.
Bruinsma, J. (2003). World Agriculture: Towards 2015/2030 An FAO perspective. Earthscan Publications Ltd, London.
Burlutskiy, V. A., Peliy, A. F., Borodina, E. S., Diop, A., Batygin, A. S., Zargar, M. and Plushchikov, V. G. (2020). Efficiency of advanced sprayers for nutrient and pesticide application under precision cultivation of spring rapeseed (Brassica napus). Research on Crops 21 : 466-72.
Castel, B., Fairhead, S., Furzer, O. J., Redkar, A., Wang, S., Cevik, V., Holub, E. B. and Jones, J. D. (2021). Evolutionary trade-offs at the Arabidopsis WRR4A resistance locus underpin alternate Albugo candida race recognition specificities. The Plant J. 107 : 1490-502.
Cevik, V., Boutrot, F., Apel, W., Robert-Seilaniantz, A., Furzer, O. J., Redkar, A., Castel, B., Kover, P. X., Prince, D. C., Holub, E. B. and Jones, J. D. G. (2019). Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc. Natl. Acad. Sci. USA. 116 : 2767-773.
Chatterjee, A., Nirwan, S, Mohapatra, S, Sharma, P. Agnihotri, A. and Shrivastava, N. (2022). Biochemical aspects of pathogenic variability in white rust infected Indian mustard. Mycologia 114 : 757-68.
Chatterjee, A., Nirwan, S., Bandyopadhyay, P., Agnihotri, A., Sharma, P., Abdin, M. Z. and Shrivastava, N. (2020). Genomic and molecular perspectives of host-pathogen interaction and resistance strategies against white rust in oilseed mustard. Curr. Genomics 21 :179-93.
Chatterjee, A., Nirwan, S., Sharma, P., Agnihotri, A. and Shrivastava, N. (2021). Investigating the in vitro regeneration vigour of Brassica juncea var Varuna and its white rust tolerant mutant genotypes: conjugating the conventional and biotechnological approaches. Plant Cell Biotechnol. Mol. Biol. 22 : 122-35.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28 : 350-56.
Furzer, O. J., Cevik, V., Fairhead, S., Bailey, K., Redkar, A., Schudoma, C., MacLean, D., Holub, E. B. and Jones, J. D. (2022). An improved assembly of the Albugo candida Ac2V genome reveals the expansion of the “CCG” class of effectors. Mol. Plant Microbe Interact. 35 : 39-48.
Guleria, S. and Kumar, A. (2006). Qualitative profiling of phenols and extracellular proteins induced in mustard (Brassica juncea) in response to benzothiadiazole treatment. J. Cell Mol. Biol5 : 51-56.
Gupta, A. K., Raj, R., Kumari, K., Singh, S. P., Solanki, I. S. and Choudhary, R. (2018). Management of major diseases of Indian mustard through balanced fertilization, cultural practices and fungicides in calcareous soils. Proc. National Acad. Sci., India Section B: Biol. Sci88 : 229-39.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem193 : 265-75.
Mathpal, P., Punetha, H., Tewari, A. K. and Agrawal, S. (2016). Biochemical defense mechanism in rapeseed-mustard genotypes against Alternaria blight disease. J. Oilseed Brassica 1 : 87-94.
McMullan, M., Gardiner, A., Bailey, K., Kemen, E., Ward, B. J., Cevik, V., Robert-Seilaniantz, A., Schultz-Larsen, T., Balmuth, A., Holub, E., van Oosterhout, C. and Jones, J. D. (2015). Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. eLife 4 : doi: 10.7554/eLife.04550.
Mishra, K. K., Kolte, S. J., Nashaat, N. I. and Awasthi, R. P. (2009). Pathological and biochemical changes in Brassica juncea (mustard) infected with Albugo candida (white rust). Plant Pathol. 58 : 80-86.
Mitra, M. and Gantait, S. (2020). Tissue culture- mediated biotechnological advancements in genus Brassica. In. Brassica Improvement. Springer, Cham. Pp. 85-107.
Nirwan, S., Chatterjee, A., Tewari, A. K., Agnihotri, A., Sharma, P., Abdin, M. Z. and Shrivastava, N. (2022). Pathotyping of white rust pathogen Albugo candida on Brassicaceae hosts in India. Indian Phytopathol. 75 : 383-93.
Prem, D. and Agnihotri, A. (2011). Microspore mutagenesis: selection for useful agronomic traits and fungal disease resistance in Indian mustard In: Proc. 13th International Rapeseed Congress: Brassica 2011 held from June 5 to 9, 2011, Prague, Czech Republic.
Prem, D., Gupta, K., Sarkar, G. and Agnihotri, A. (2008). Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica junceaPlant Cell Tissue Organ Cult. 93 : 269-82.
Rahman, M., Khatun, A., Liu, L. and Barkla, B. J. (2018). Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules 23 : doi: 10.3390/ molecules23010231.
Singh, H. V. (2000). Biochemical basis of resistance in Brassica species against downy mildew and white rust of mustard. Plant Dis. Res. 15 : 75-77.
Singh, O. W., Singh, N., Kamil, D., Singh, V. K., Devi, T. P. and Prasad, L. (2021). Morpho-molecular variability and host reactivity of Albugo candida isolates infecting Brassica juncea genotypes in India. J. Plant Pathol. 103 : 139-53.
Singh, U., David, A. A., Patel, H. K. and Patel, P. D. (2017). Effect of different levels of organic and inorganic nutrient sources on growth and yield of mustard (Brassica juncea L.). Crop Res. 52 : 147-49.
Sylvester-Bradley, R. (1985). Revision of a code for stages of development in oilseed rape (Brassica napus L.). Aspects Appl. Biol. 10 : 395-400.
Tauzin, A.S. and Giardina, T. (2014). Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci5 : doi.org/10.3389/fpls.2014.00293.
Tirnaz, S., Miyaji, N., Takuno, S., Bayer, P. E., Shimizu, M., Akter, M. A., Edwards, D., Batley, J. and Fujimoto, R. (2022). Whole-genome DNA methylation analysis in Brassica rapa subsp. perviridis in response to Albugo candida infection. Front. Plant Sci. 13 : doi.org/ 10.3389/fpls.2022.849358.
Williams, P. H. (1985). CrGC Resource Book. Crucifer Genetics Co- operative. University of Wisconsin, Madison, WI, U.S.A. Pp. 124.

Global Footprints