Loading...

Technical parameters affecting the physicochemical, phenolic, antioxidant and sensory properties of watermelon (Citrullus vulgaris L.) kefir 


Citation :- Technical parameters affecting the physicochemical, phenolic, antioxidant and sensory properties of watermelon (Citrullus vulgaris L.) kefir. Res. Crop. 23: 621-627
NGUYEN PHUOC MINH nguyenphuocminh@tdmu.edu.vn
Address : Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam

Abstract

             Watermelon contains a rich source of valuable constituents that could be utilized as substrate for lactic and alcoholic fermentation. Fruit kefir beverages are really appreciated due to its unique acidic taste, refreshing, low carbonated, adequate alcoholic and acceptable acetic content. It’s necessary to process watermelon fruit into value-added product to resolve the unmarketable congestion at harvesting season. This research was conducted at STNanotech Laboratory in 2021 to demonstrate different technical parameters such as fermentation temperature (28-31oC), fermentation time (12-60 hrs), kefir grain ratio (3-5% w/v) to the physicochemical, phenolic, antioxidant and sensory attributes of watermelon kefir. Results showed that fermentation resulted on a significant degradation of total soluble solid, total phenolic content and DPPH free radical scavenging, a great improvement of total titratable acidity and ethanol. Meanwhile, there was no clear difference on viscosity during fermentation. Watermelon juice fermented at 30oC for 36 hrs with 4% kefir grain showed the best overall acceptance (8.86±0.01 score) with adequate ethanol content (4.28±0.02 % v/v) and total titratable acidity (2.56±0.01 g/L citric acid). Watermelon kefir with a pleasant alcoholic flavor would be one favorite beverage in daily consumption.

Keywords

Acidity ethanol kefir grain phenolic watermelon juice

References

Altas, S., Kizil, G. and Kizil, M. (2011). Protective effect of watermelon juice on carbon tetrachloride induced toxicity in rats. Food Chem. Toxicol. 49 : 2433-438.

Aminu, Z., Yabaya, A., Mohammed, S. S. D. and Bobai, M. (2018). Quality assessment of water melon (Citruluslanatus) wine produced using saccharomyces cerevisiae isolated from palm wine. J. Biomater. 2 : 65-73.

Andriana, Y., Xuan, T. D., Quy, T. N., Minh, T. N., Van, T. M. and Viet, T. D. (2019). Antihyperuricemia, antioxidant, and antibacterial activities of Tridax procumbens L. Foods 8 : doi: 10.3390/foods8010021.
AOAC (1995). Official methods of analysis of the association of the official analytical chemists. USA: 5th Revision, AOAC International, volume 2, 16th edition.
Bambang, D., Heni, R. and Bhakti, E. S. (2020). Physicochemical and sensory characteristics of green coconut (Cocos nucifera L.) water kefir. Int. J. Food Stud. 9 : 346-59.
Beshkova, D. M., Simova, E. D., Frengova, G. I., Simov, Z. I. and Dimitrov, Z. P. (2003). Production of volatile aroma compounds by kefir starter cultures. Int. Dairy J. 13 : 529-35.
Blanca, C. S. A., Misael, C. R. and Olga, M. C. (2016). Identification of some kefir microorganisms and optimization of their production in sugarcane juice. Rev. Fac. Nac. Agron. 69 : 7935-943.
Cheng, H. (2010). Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 50 : 938-50.
Delgado-Fernandez, P., Corzo, N., Olano, A., Hernandez-Hernandez, O. and Javier Moreno, F. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. Int. Dairy J. 89 : 77-85.
Dias, D. R., Schwan, R. F. and Lima, L. C. O. (2003). Methodology for elaboration of fermented alcoholic beverage from yellow mombin (Spondias mombin). Food Sci. Technol. (Campinas) 23 : 342-50.
Du, X. and Myracle, A. D. (2018). Development and evaluation of kefir products made with aronia or elderberry juice: sensory and phytochemical characteristics. Int. Food Res. J. 25 : 1373-383.
Duarte, W. F., Dias, D. R., Oliveira, J. M., Teixeira, J. A., Silva, J. B. D. A. and Schwan, R. F. (2010). Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT-Food Sci. Technol. 43 : 1564-572.
Fiorda, F. A., de Melo Pereira, G. V., Thomaz Soccol, V., Rakshit, S. K., Binder Pagnoncelli, M. G., de Souza Vandenberghe, L. P. and Soccol, C. R. (2017). Microbiological, biochemical, and functional aspects of sugary kefir fermentation-a review. Food Microbiol. 66 : 86-95.
Friedman, M. and Jurgens, H. S. (2000). Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 48 : 2101-110.
Ghavipour, M., Saedisomeolia, A., Djalali, M., Sotoudeh, G., Eshraghyan, M. R., Moghadam, A. M. and Wood, L.G. (2013). Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 109 : 2031-035.
Ismaiel, A. A., Ghaly, M. F. and El-Naggar, A. K. (2011). Some physicochemical analyses of kefir produced under different fermentation conditions. J.  Sci. Ind. Res. 70 : 365-72.
Jorge, L. P., Maria, L. E. G. and Maria, V. (2022). A new functional kefir fermented beverage obtained from fruit and vegetable juice: Development and characterization.
LWT 154 : doi.org/10.1016/j.lwt.2021.112728.
Laureys, D. and De Vuyst, L. (2014). Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl. Environ. Microbiol. 80 : 2564-572.
Magalhaes, K. T., Pereira, G. D. M., Dias, D. R. and Schwan, R. F. (2010). Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J. Microbiol. Biotechnol. 26 : 1241-250.
Magalhaes-Guedes, K., Pereira, G., Campos, C., Dragone, G. and Schwan, R. (2011). Brazilian kefir: Structure, microbial communities and chemical composition. Braz. J. Microbiol. 42 : 693-702.
Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P. and Cotter, P. D. (2013). Sequence-based analysis of the microbial composition of water kefir from multiple sources. Fems. Microbiol. Lett. 348 : 79-85.
Mei-Ling, W., Youk-Meng, C., Nan-Wei, S. and Min-Hsiung, L. (2003). A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography. J. Food Drug Anal. 11 : 133-40.
Minh, N. P. (2021a). Effectiveness of pickling on the phytochemical composition and antioxidant ability in kelakai (Stenochlaena palustris) creeping fern. Res. Crop. 22 : 948-52.
Minh, N. P. (2021b). Effect of thermal treatments on the phenolic composition and
antioxidant retention in Celastrus hindsii leaf. Res. Crop. 22 : 953-58.
Nayereh, S. and Faramarz, K. (2015). Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 52 : 3711-718.
Onofrio, C., Walter, R., Alessandro, M., Rosa, G., Nicola, F., Huseyin, E., Giancarlo, M. and Luca, S. (2016). Characterization of kefir-like beverages produced from vegetable juices. LWT – Food Sci. Technol. 66 : 572-81.
Pedro, P. L. G. T., Emanuele, A. A., Renata, Q. N., Larissa, F. S. C., Paulo, V. F. L., Janice, I. D., Thâmilla, T. B. O., Roberta, B. A., Adriana, L. C. S., Karina, T. M. G. and Maria, E. O. M. (2021). Chemical, microbiological and sensory viability of low-calorie, dairy-free kefir beverages from tropical mixed fruit juices. CyTA - J. Food 19 : 457-64. 
Pereira, G. M. V., Ramos, C. L., Galvão, C., Souza Dias, E. and Schwan, R. F. (2010). Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. Lett. Appl. Microbiol. 51 : 131-37.
Puerari, C., Magalhaes, K. T. and Schwan, R. F. (2012). New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 48 : 634-40.
Singleton, V. L. and Rossi, J. A. J. R. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Amer. J. Enol. Viticulture 16 : 144- 58.
Stavros, K., Ioanna, M., Chrysanthi, N., Athanasios, A., Eugenia, B., Argyro, B., Stavros, P. and Theodoros, V. (2016). Production of low-alcohol fruit beverages through fermentation of pomegranate and orange juices with kefir grains. Curr Res. Nutr. Food Sci. 4 : 19-26.
Stephen, M. J. and Sirirat, D. (2015). Properties and benefits of kefir - A review. Songklanakarin J. Sci. Technol. 37 : 275-82.
Tlili, I., Hiddler, C., Lenucci, M. S., Riadh, I., Jebbari, H. and Dalessandro, G. (2011). Bioactive compounds and antioxidant activities of different watermelon cultivar as affected by fruit sampling area. J. Food Comp. Anal. 24 : 307–314.
Tong, C., Peng, C., Wang, L., Zhang, L., Yang, X., Xu, P. and Qi, H. (2016). Intravenous administration of lycopene, a tomato extract, protects against myocardial ischemia-reperfusion injury. Nutr. 8 : 138.
Walter, R., Onofrio, C., Rosa, G., Nicola, F., Maria Antonietta, G., Huseyin, E., Giancarlo, M. and Luca, S. (2016). Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms.  Food Microbiol. 54 : 40-51.
Wang, J., Zhao, X., Tian, Z., Yang, Y. and Yang, Z. (2015). Characterization of an exopolysaccharide produced by Lactobacillus plantarum yw11 isolated from tibet kefir. Carbohydrate Polym. 125 : 16-25.
Yilmaz, L., Özcan Yilsay, T. and Akpinar Bayizit, A. (2006). The sensory characteristics of berry-flavoured kefir. Czech J. Food Sci. 24 : 26-32.
Yuliana, N. (2012). Kinetika pertumbuhan bakteri asam laktat isolat t5 yang berasal dari tempoyak. J. Teknol. Ind. Hasil Pertanian 13 : 108-16.
Zhou, T., Li, B., Peng, C., Ji, B. P., Chen, G. and Ren, Y. L. (2009). Assessment of the sequential simulated gastrointestinal tolerance of lactic acid bacteria from kefir grains by response surface methodology. J. Food Sci. 74 : 328-34.
 

Global Footprints