Akhil, H. (2014). Artocarpus: A review of its phytochemistry and pharmacology. J. Pharm. 9 : 7-12.
Arif, A. R., Natsir, H., Rohani, H. and Karim, A. (2018). Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method. J. Physics: Conf. Series 979 : doi :10.1088/1742-6596/979/1/012015.
Babitha, S., Soccol, C. R. and Pandey, A. (2006). Jackfruit seed-a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol. Biotechnol. 44 : 465-71.
Bertolin, T. E., Schmidell, W., Maiorano, A. E., Casara, J. and Costa, J. A. V. (2003). Influence of carbon, nitrogen and phosphorous sources on glucoamylase production by Aspergillus awamori in solid state fermentation. Zeitschrift für Naturforschung C:A J. Biosci. 58c : 708-12.
Chongkhong, S., Lolharat, B. and Chetpattananondh, P. (2012). Optimization of ethanol production from fresh jackfruit seeds using response surface methodology. J. Sustainable Energy Enviro. 3 : 97-101.
Duangjai, O., Nisakorn, N., Wipawadee, L. and Sasima, P. (2012). Ethanol production on jackfruit seeds by selected fungi and yeast from loog-pang. KMITL Sci. Tech. J. 12 : 1-6.
Eka, T., Sri, H., Deliana, D., Muhammad, N. and Haznan, N. (2015). Optimization of saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chem. 16 : 141-48.
Garamon, S. E. (2019). Sequestration of hazardous Brilliant Green dye from aqueous solution using low-cost agro-wastes: Activated carbon prepared from rice and barley husks. Res. Crop. 20 : 886-91.
Hernandez-Lopez, A., Sánchez Félix, D. A., Sierra, Z. Z., Bravo, I. G., Dinkova, T. D. and Avila-Alejandre, A. X. (2020). Quantification of reducing sugars based on the qualitative technique of Benedict. ACS Omega 5 : 32403-2410.
Kaur, P., Grewal, H. S. and Kocher, G. S. (2003) Production of α-amylase by Aspergillus niger using wheat bran in submerged and solid-state fermentations. Indian J. Microbiol. 43 : 143-45.
Kumar, S., Singh, A. B., Abidi, A. B., Upadhyay, R. G. and Singh, A. (1988). Proximate composition of jackfruit seeds. J. Food Sci. Technol. 25 : 141-52.
Moumita, K. and Rina, R. R. (2011). Saccharification of agro wastes by the Endoglucanase of Rhizopus oryzae. Ann. Biol. Res. 2 : 201-08.
Ochaikul, D., Poungmalee, B., Yimyai, T. and Keawkaew, S. (2010). Production of ethanol from jackfruit seeds starch by enzymatic hydrolyzation and Saccharomyces cerevisiae fermentation. Proceeedings NZMS and NZSBMB Joint Meeting, 30 November -3 December, The University of Auckland, New Zealand. Pp. 65-66.
Otegbayo, B. O., Samuel, F. O. and Alalade, T. (2013). Functional properties of soy-enriched tapioca. Afr. J. Biotechnol. 12 : 3583-589.
Strąk-Graczyk, E. and Balcerek, M. (2020). Effect of pre-hydrolysis on simultaneous saccharification and fermentation of native rye starch. Food Bioprocess Technol. 13 : 923-36.
Vasudeo, Z. (2010). Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int. J. Life Sci. 4 : 16-25.
Wahidin, N. and Wuryantoro (2015). Ethanol synthesis from jackfruit (Artocarpus heterophyllus Lam.) stone waste as renewable energy source. Energy Procedia 65 : 372-77.
Wang, S., Thomas, K. C., Ingledew, W. M., Sosulski, K. and Sosulski, F. W. (1998). Production of fuel ethanol from rye and triticale by very-high-gravity (VHG) fermentation. Appl. Biochem. Biotechnol. - Part A Enzyme Eng. Biotechnol. 69 : 157-75.
Zhang, J., Liu, S., Sun, H., Jiang, Z., Zhou, Z., Han, X., Zhou, Y., Sun, H., Zhou, W. and Mao, J. (2021). Enzyme production potential of Penicillium oxalicum m1816 and its application in ferulic acid production. Foods 10 : doi: 10.3390/foods10112577.
Arif, A. R., Natsir, H., Rohani, H. and Karim, A. (2018). Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method. J. Physics: Conf. Series 979 : doi :10.1088/1742-6596/979/1/012015.
Babitha, S., Soccol, C. R. and Pandey, A. (2006). Jackfruit seed-a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol. Biotechnol. 44 : 465-71.
Bertolin, T. E., Schmidell, W., Maiorano, A. E., Casara, J. and Costa, J. A. V. (2003). Influence of carbon, nitrogen and phosphorous sources on glucoamylase production by Aspergillus awamori in solid state fermentation. Zeitschrift für Naturforschung C:A J. Biosci. 58c : 708-12.
Chongkhong, S., Lolharat, B. and Chetpattananondh, P. (2012). Optimization of ethanol production from fresh jackfruit seeds using response surface methodology. J. Sustainable Energy Enviro. 3 : 97-101.
Duangjai, O., Nisakorn, N., Wipawadee, L. and Sasima, P. (2012). Ethanol production on jackfruit seeds by selected fungi and yeast from loog-pang. KMITL Sci. Tech. J. 12 : 1-6.
Eka, T., Sri, H., Deliana, D., Muhammad, N. and Haznan, N. (2015). Optimization of saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chem. 16 : 141-48.
Garamon, S. E. (2019). Sequestration of hazardous Brilliant Green dye from aqueous solution using low-cost agro-wastes: Activated carbon prepared from rice and barley husks. Res. Crop. 20 : 886-91.
Hernandez-Lopez, A., Sánchez Félix, D. A., Sierra, Z. Z., Bravo, I. G., Dinkova, T. D. and Avila-Alejandre, A. X. (2020). Quantification of reducing sugars based on the qualitative technique of Benedict. ACS Omega 5 : 32403-2410.
Kaur, P., Grewal, H. S. and Kocher, G. S. (2003) Production of α-amylase by Aspergillus niger using wheat bran in submerged and solid-state fermentations. Indian J. Microbiol. 43 : 143-45.
Kumar, S., Singh, A. B., Abidi, A. B., Upadhyay, R. G. and Singh, A. (1988). Proximate composition of jackfruit seeds. J. Food Sci. Technol. 25 : 141-52.
Moumita, K. and Rina, R. R. (2011). Saccharification of agro wastes by the Endoglucanase of Rhizopus oryzae. Ann. Biol. Res. 2 : 201-08.
Ochaikul, D., Poungmalee, B., Yimyai, T. and Keawkaew, S. (2010). Production of ethanol from jackfruit seeds starch by enzymatic hydrolyzation and Saccharomyces cerevisiae fermentation. Proceeedings NZMS and NZSBMB Joint Meeting, 30 November -3 December, The University of Auckland, New Zealand. Pp. 65-66.
Otegbayo, B. O., Samuel, F. O. and Alalade, T. (2013). Functional properties of soy-enriched tapioca. Afr. J. Biotechnol. 12 : 3583-589.
Strąk-Graczyk, E. and Balcerek, M. (2020). Effect of pre-hydrolysis on simultaneous saccharification and fermentation of native rye starch. Food Bioprocess Technol. 13 : 923-36.
Vasudeo, Z. (2010). Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int. J. Life Sci. 4 : 16-25.
Wahidin, N. and Wuryantoro (2015). Ethanol synthesis from jackfruit (Artocarpus heterophyllus Lam.) stone waste as renewable energy source. Energy Procedia 65 : 372-77.
Wang, S., Thomas, K. C., Ingledew, W. M., Sosulski, K. and Sosulski, F. W. (1998). Production of fuel ethanol from rye and triticale by very-high-gravity (VHG) fermentation. Appl. Biochem. Biotechnol. - Part A Enzyme Eng. Biotechnol. 69 : 157-75.
Zhang, J., Liu, S., Sun, H., Jiang, Z., Zhou, Z., Han, X., Zhou, Y., Sun, H., Zhou, W. and Mao, J. (2021). Enzyme production potential of Penicillium oxalicum m1816 and its application in ferulic acid production. Foods 10 : doi: 10.3390/foods10112577.